

Lecture Notes in Computer Science 4124
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Hermann de Meer James P. G. Sterbenz (Eds.)

Self-Organizing
Systems

First International Workshop, IWSOS 2006
and Third International Workshop on New Trends
in Network Architectures and Services, EuroNGI 2006
Passau, Germany, September 18-20, 2006
Proceedings

13

Volume Editors

Hermann de Meer
University of Passau
Faculty for Mathematics and Informatics
Innstr. 33, 94032 Passau, Germany
E-mail: demeer@fmi.uni-passau.de

James P.G. Sterbenz
University of Kansas
Department of Electrical Engineering and Computer Science
Information and Telecommunication Technology Center
209 Nichols Hall, 2335 Irving Hill Rd, Lawrence, Kansas 66045-7612, USA
E-mail: jpgs@ittc.ku.edu, jpgs@comp.lancs.ac.uk

Library of Congress Control Number: 2006931005

CR Subject Classification (1998): C.2.4, C.2, D.4.4, D.2, I.2.11, H.3

LNCS Sublibrary: SL 5 – Computer Communication Networks andTelecommunications

ISSN 0302-9743
ISBN-10 3-540-37658-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37658-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11822035 06/3142 5 4 3 2 1 0

Preface

We welcome you to the proceedings of the workshop on self-organizing systems,
held at the University of Passau, located at the confluence of the Danube, Inn,
and Ilz rivers, in the beautiful state of Bavaria, Germany! We hope you enjoyed
your time in this ancient and historic city.

Self-organizing systems emerge as an increasingly important area of research,
particularly for computer networks. Auto-configuration and self-organization
are key enablers for network optimization, self-management, self-diagnosis, self-
repair, and autonomic networking in support of the increasing complexity and
demands on the global Internet, as well as for emerging technologies such as
ad-hoc, sensor, and peer-to-peer overlay networks.

In recognition of this, we created a cross-disciplinary program at the First
International Workshop on Self-Organizing Systems (IWSOS 2006). This event
was supported by the European Next Generation Internet (EuroNGI) Network of
Excellence, which gathers major leading European institutions and researchers.
Previously, two EuroNGI workshops on “New Trends of Network Services and
Architectures” took place in Wuerzburg, Germany, and then in Villa Vigoni at
Lake Como, Italy. The third edition of this workshop emerged as the first IWSOS
2006.

We hoped to seed connections between different disciplines and between in-
dustry and academia. The technical program consisted of six sessions: dynamics
of structured and unstructured overlays; self-organization in peer-to-peer net-
works; self-organization in wireless environments; self-organization for network
management and routing; self-organization in grid computing; and self-managing
and autonomic computing.

Additionally, two sessions consisted of work-in-progress and position papers
and featured ideas and early research that is still open for discussion and com-
mentary. Furthermore, a poster session permitted participants to interact with
members of the European Network of Excellence EuroNGI, to discuss research
in an informal setting.

In addition to the reviewed paper sessions, we were exceptionally pleased to
present Robbert van Renesse, Cornell University, USA, as our keynote speaker
with the challenging topic on “Making Self-Organizing Systems Secure”. An
international panel session entitled “Self-Organising Networks: Panacea or Pan-
dora’s Box?” considered the benefits, complexities and prospects for future de-
ployment of these emerging technologies. Two half-day tutorials on the topics
of resilient and survivable networks, as well as on peer-to-peer networking, com-
pleted the attractive program.

As always, a great deal of effort has gone into creating this program. More
than 70 paper submissions were received from 21 countries. We were particularly
pleased with the relatively large number of papers received from Asia. The best

VI Preface

16 full papers were selected after a thorough peer reviewing process, in which
each paper was independently evaluated by at least three reviewers. In addition
to the full papers, six short papers and a preselection of posters were chosen
based on their merit for the respective session and their general quality.

We wish to thank the Technical Program Committee for their hard work to
ensure that high-quality papers were accepted and that new research was viewed
with an open mind. Many thanks also to Amine Houyou, Patrick Wüchner,
Richard Holzer, Christopher Auer, Michael Straßer, the student volunteers and
many other people who helped with the workshop organization during various
phases. Finally, the authors are to be thanked for their submissions and contin-
uing excellence.

June - September 2006 Hermann de Meer and James P.G. Sterbenz
Program Chairs

IWSOS 2006

Organization

Program Chairs

Hermann de Meer, University of Passau, Germany
James P.G. Sterbenz, University of Kansas, USA, and Lancaster University, UK

Steering Committee

Hermann de Meer, University of Passau, Germany
David Hutchison, Lancaster University, UK
Bernhard Plattner, ETH Zurich, Switzerland
James P.G. Sterbenz, University of Kansas, USA, and Lancaster University, UK

Program Committee

Karl Aberer, EPFL, Lausanne, Switzerland
Ozalp Babaoglu, University of Bologna, Italy
Ernst Biersack, Institut Eurécom, Sophia Antipolis, France
Onno Boxma, Eindhoven University of Technology, Netherlands
Augusto Casaca, INESC-ID, Lisbon, Portugal
Vicente Casares-Giner, Polytechnic University of Valencia, Spain
Claudio Casetti, Polytechnic University of Turin, Italy
Costas Courcoubetis, Athens University of Economics and Business, Greece
Hermann de Meer, University of Passau, Germany
Giovanna Di Marzo Serugendo, University of Geneva, Switzerland
Markus Fiedler, Blekinge Institute of Technology, Karlskrona, Sweden
Stefan Fischer, University of Lübeck, Germany
Luigi Fratta, Polytechnic University of Milan, Italy
Michael Fry, University of Sydney, Australia
Christos Gkantsidis, Microsoft Research, Cambridge, UK
Martin Greiner, Siemens AG, Munich, Germany
Indranil Gupta, University of Illinois, Urbana, USA
Günter Haring, University of Vienna, Austria
Oliver Heckmann, Darmstadt University of Technology, Germany
Karin A. Hummel, University of Vienna, Austria
David Hutchison, Lancaster University, UK
Wolfgang Kellerer, DoCoMo Lab Europe, Munich, Germany
Anne-Marie Kermarrec, INRIA, Rennes, France
Daniel Kofman, GET/ENST, Paris, France

VIII Organization

Rajesh Krishnan, BBN Technologies, Cambridge, Massachusetts, USA
Paul Kühn, University of Stuttgart, Germany
Geng-Sheng Kuo, National Chengchi University, Taipei, Taiwan
Aurel A. Lazar, Columbia University, New York, USA
Baochun Li, University of Toronto, Ontario, Canada
J.P. Martin-Flatin, UQAM, Montreal, Quebec, Canada
Paul Müller, University of Kaiserslautern, Germany
Manish Parashar, Rutgers, The State University of New Jersey, Piscataway, USA
Bernhard Plattner, ETH Zurich, Switzerland
Christian Prehofer, DoCoMo Lab Europe, Munich, Germany
Martha Steenstrup, Clemson University, South Carolina, USA
Ralf Steinmetz, Darmstadt University of Technology, Germany
James P.G. Sterbenz, University of Kansas, USA, and Lancaster University, UK
Burkhard Stiller, University of Zurich, Switzerland
Zhili Sun, University of Surrey, Guildford, UK
Kurt Tutschku, University of Würzburg, Germany
Maarten van Steen, Free University of Amsterdam, Netherlands
Klaus Wehrle, University of Tübingen, Germany

Organization Committee

Christopher Auer, University of Passau, Germany
Andreas Berl, University of Passau, Germany
Nafeesa Bohra, University of Passau, Germany
Silvia Lehmbeck, University of Passau, Germany
Ivan Dedinski, University of Passau, Germany
Richard Holzer, University of Passau, Germany
Amine M. Houyou, University of Passau, Germany
Jens O. Oberender, University of Passau, Germany
Stella Stars, University of Passau, Germany
Michael Straßer, University of Passau, Germany
Patrick Wüchner, University of Passau, Germany

Reviewers

Karl Aberer
Ralf Ackermann
Alexander Adrowitzer
Patrik Arlos
Ozalp Babaoglu
Rainer Berbner
Andreas Berl

Viraj Bhat
Ernst Biersack
Andreas Binzenhöfer
Thomas Bocek
Nafeesa Bohra
Onno Boxma
Carsten Buschmann

Organization IX

Augusto Casaca
Vicente Casares-Giner
Claudio Casetti
Sumir Chandra
Costas Courcoubetis
Philippe Cudré-Mauroux
Vasilios Darlagiannis
Anwitaman Datta
Hermann de Meer
Ivan Dedinski
Zoran Despotovic
Giovanna Di Marzo Serugendo
Maŕıa-José Doménech-Benlloch
Alessandro Duminuco
Julian Eckert
Markus Fiedler
Stefan Fischer
Michael Fry
Wojciech Galuba
David Garćıa Roger
Jan Gerke
José Manuel Giménez Guzmán
Šarūnas Girdzijauskas
Christos Gkantsidis
Martin Greiner
Indranil Gupta
Günter Haring
Hasan Hasan
David Hausheer
Oliver Heckmann
Helmut Hlavacs
Richard Holzer
Tobias Hösfeld
Amine M. Houyou
Karin A. Hummel
David Hutchison
Oana Jurca
Wolfgang Kellerer
Anne-Marie Kermarrec
Bernhard Klein
Fabius Klemm
Andre König
Rajesh Krishnan
Tronje Krop
Daniela Krüger

Geng-Sheng Kuo
Pascal Kurtansky
Vu Le Hung
Baochun Li
Nicolas Liebau
Martin Lipphardt
Luis Loyola
J.P. Martin-Flatin
Cristian Morariu
Paul Müller
Jens O. Oberender
Simon Oechsner
Melek Önen
Krishna Pandit
Manish Parashar
Dennis Pfisterer
Vicent Pla
Bernhard Plattner
Christian Prehofer
Andrés Quiroz Hernández
Idris Rai
Nicolas Repp
Ali Salehi
Daniel Schlosser
Stefan Schmidt
Roman Schmidt
Johannes Schmitt
Paul Smith
Stella Stars
Ralf Steinmetz
James P.G. Sterbenz
Burkhard Stiller
Zhili Sun
Fadi Tirkawi
Kurt Tutschku
Maarten van Steen
Martin Waldburger
Thomas Walter
Axel Wegener
Klaus Wehrle
Christian Werner
Patrick Wüchner
Linlin Xie

X Organization

Organizers

Computer

Networks

 & Communications

Prof. Hermann de Meer

Table of Contents

I Invited Program

Keynote

Making Self-organizing Systems Secure . 3
Robbert van Renesse

Panel

Self-organising Networks: Panacea or Pandora’s Box? 4
James P.G. Sterbenz

II Full Papers

Dynamics of Structured and Unstructured Overlays

The Challenges of Merging Two Similar Structured Overlays: A Tale of
Two Networks . 7

Anwitaman Datta, Karl Aberer

Self-protection in P2P Networks: Choosing the Right Neighbourhood 23
Ivan Martinovic, Christof Leng, Frank A. Zdarsky, Andreas Mauthe,
Ralf Steinmetz, Jens B. Schmitt

Self-organization in Peer-to-Peer Networks

Modelling the Population Dynamics and the File Availability in a
BitTorrent-Like P2P System with Decreasing Peer Arrival Rate 34

Riikka Susitaival, Samuli Aalto

Combining Virtual and Physical Structures for Self-organized
Routing . 49

Thomas Fuhrmann

Optimizing Locality for Self-organizing Context-Based Systems 62
Mirko Knoll, Torben Weis

XII Table of Contents

Self-organization in Wireless Environments

Randomized Self-stabilizing Algorithms for Wireless Sensor Networks 74
Volker Turau, Christoph Weyer

The Case for Virtualized Wireless Access Networks . 90
Frank A. Zdarsky, Ivan Martinovic, Jens B. Schmitt

Self-organization in Distributed and GRID
Computing

Job Scheduling for Maximal Throughput in Autonomic Computing
Systems . 105

Kevin Ross, Nicholas Bambos

Investigating Global Behavior in Computing Grids . 120
Kevin L. Mills, Christopher Dabrowski

Using Decentralized Clustering for Task Allocation in Networks with
Reconfigurable Helper Units . 137

Daniel Merkle, Martin Middendorf, Alexander Scheidler

Self-organization for Network Management and
Routing

Self-tuned Refresh Rate in a Swarm Intelligence Path Management
System . 148

Poul E. Heegaard, Otto J. Wittner

Cross-Layer Approach to Detect Data Packet Droppers in Mobile
Ad-Hoc Networks . 163

Djamel Djenouri, Nadjib Badache

On-Demand Distributed Energy-Aware Routing with Limited Route
Length . 177

Cheolgi Kim, Kisoo Chang, Joongsoo Ma

Self-managing and Autonomic Computing

Automatic Data Locality Optimization Through Self-optimization 187
Rainer Buchty, Jie Tao, Wolfgang Karl

Table of Contents XIII

A Bio-inspired Approach for Self-protecting an Organic Middleware
with Artificial Antibodies . 202

Andreas Pietzowski, Benjamin Satzger, Wolfgang Trumler,
Theo Ungerer

Autonomic Management of Edge Servers . 216
Mikael Desertot, Clement Escoffier, Philippe Lalanda,
Didier Donsez

III Short Papers

Ubiquitous Zone Networking Technologies for Multi-hop Based
Wireless Communications . 233

Namhi Kang, Ilkyun Park, Younghan Kim

Proposal for Self-organizing Information Distribution in
Peer-to-Peer Networks . 236

Arne Handt

Autonomic Security for Home Networks . 239
Mohamad Aljnidi, Jean Leneutre

Hovering Data Clouds: A Decentralized and Self-organizing
Information System . 243

Axel Wegener, Elad M. Schiller, Horst Hellbrück, Sándor P. Fekete,
Stefan Fischer

Defending Grids Against Intrusions . 248
Alexandre Schulter, Kleber Vieira, Carlos Becker Westphall,
Carla Westphall

ORCA – Towards an Organic Robotic Control Architecture 251
Florian Mösch, Marek Litza, Adam El Sayed Auf, Erik Maehle,
Karl E. Großpietsch, Werner Brockmann

IV Posters

Active Element Network with P2P Control Plane . 257
Michal Procházka, Petr Holub, Eva Hladká

A Monitoring Infrastructure for the Digital on-demand Computing
Organism (DodOrg) . 258

Rainer Buchty

XIV Table of Contents

Autonomic Network Management for Wireless Mesh and MANETs 259
Shafique Ahmad Chaudhry, Ali Hammad Akbar, Faisal Siddiqui,
Ki-Hyung Kim

Author Index . 261

Invited Program

Making Self-organizing Systems Secure

Robbert van Renesse

Department of Computer Science, 4105C Upson Hall,
Cornell University, Ithaca, NY 14853-7501

rvr@cs.cornell.edu

Extended Abstract. Network overlays provide important routing functional-
ity not supported directly by the Internet. Such functionality includes multicast
routing, content-based routing, and resilient routing, as well as combinations
thereof. As network overlays are starting to be deployed for critical applica-
tions such as Internet telephony (e.g., Skype), web casting/distance education,
web conferencing (e.g., NetMeeting), and even DNS replacements (CoDons), effi-
ciency and security are becoming important attributes. For example, a web cast
of a political conference may be an attractive target. Alas, most current network
overlays are built from Distributed Hash Tables and spanning trees, resulting in
infrastructures that are easily compromised. But traditional protocols based on
Byzantine agreement do not scale to the sizes required.

We are exploring the use of randomized protocols for network overlays. Such
protocols are often highly tolerant of benign failures such as crashes and message
loss. We modify these protocols in non-trivial ways in order to make them tolerant
of intrusions. In particular, we use epidemic protocols to build a pseudo-random
mesh of participants, and use controlled flooding for disseminating information ef-
ficiently and reliably in the face of compromised participants. Note that we do not
attempt to detect (Intrusion Detection, Reputation) or prevent intrusions (Ac-
cess Control). Doing so would lead to an arms race that may not be productive.
Instead, we only tolerate intrusions. Unlike Byzantine protocols, our protocols de-
grade gracefully as a larger percentage of participants is compromised.

We have built two protocols to date. The first, Fireflies, is an epidemic group
membership protocol that maintains a pseudo-random mesh among its partic-
ipants. Fireflies has been deployed and extensive evaluated on Planetlab. We
used various forms of attack, with percentages of intruders of up to 25%. At the
scale of Planetlab, Fireflies performs similarly to Chord, a well-known DHT, in
terms of use of CPU, memory and bandwidth resources, but all correct nodes are
guaranteed to be able to communicate with high probability. We have also de-
veloped a correctness proof of the Fireflies protocol. The second, SecureStream,
is an audio and video streaming protocol. Currently, SecureStream has only
been deployed on Emulab for testing scenarios, where it performs similarly to
well-known protocols like SplitStream, even in the face of 20% or more intruders.

On top of these, we are currently developing a software distribution service
that can reliably disseminate and install security updates without giving hackers
an opportunity to reverse engineer patches and launch viruses that exploit the
corresponding security holes, as well as a webcast service.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, p. 3, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-organising Networks:
Panacea or Pandora’s Box?

James P.G. Sterbenz1,2

1 University of Kansas, USA
jpgs@ittc.ku.edu

2 Lancaster University, UK
jpgs@comp.lancs.ac.uk

Extended Abstract. Self-organisation is a key enabler for a number of ad-
vanced networking scenarios. Algorithms for auto-configuration of nodes and
self-organisation of networks have been traditionally applied to ad hoc networks
and more recently to peer-to-peer overlays and sensor networks, in which it is
critical to avoid human intervention to configure and reconfigure the network. As
the complexity of the Global Internet and other attached and overlay networks
increases, the ability for humans to understand, configure, and manage these net-
works is becoming increasingly difficult and expensive. Self-organisation appears
to be a key technology to enable self-organising and self-managing autonomic
networks.

This panel will consider the future prospects of self-organisation to help
solve these problems. There are significant research challenges in achieving the
vision of resilient, secure, policy-driven, large-scale self-organisation and self-
management. Furthermore, there is the risk that the additional complexity of
the new mechanisms will cause more problems than they solve. Finally, this
panel will consider whether self-organisation will be a field in danger of a large
amount of research activity having little impact on real network deployment as
has been the case with research in QoS and multicast.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, p. 4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Full Papers

The Challenges of Merging Two Similar
Structured Overlays: A Tale of Two Networks�

Anwitaman Datta and Karl Aberer

Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

anwitaman.datta@epfl.ch, karl.aberer@epfl.ch

Abstract. Structured overlay networks is an important and interesting
primitive that can be used by diverse peer-to-peer applications. Multi-
ple overlays can result either because of network partitioning or (more
likely) because different groups of peers build such overlays separately
before coming in contact with each other and wishing to coalesce the
overlays together. This paper is a first look into how multiple such over-
lays (all using the same protocols) can be merged - which is critical for
usability and adoption of such an internet-scale distributed system. We
elaborate how two networks using the same protocols can be merged,
looking specifically into two different overlay design principles: (i) main-
taining the ring invariant and (ii) structural replications, either of which
are used in various overlay networks to guarantee functional correctness
in a highly dynamic (membership changes) environment.

Particularly, we show that ring based networks can not operate until
the merger operation completes. In contrast, from the perspective of
individual peers in structurally replicated overlays there is no disruption
of service, and they can continue to discover and access resources that
they could originally do before the beginning of the merger process, even
though resources from the other network become visible only gradually
with the progress of the merger process.

1 Introduction

In the recent years there has been an increasing trend to use resources at the
edge of the network - typically desktop computers interconnected across the
internet provide services and run applications in a peer-to-peer manner, as an
alternative to the traditional paradigm of using dedicated infrastructure and
centralized coordination and control. Many peer-to-peer applications need some
basic functionalities, particularly that of locating resources efficiently in a dis-
tributed large-scale environment in a decentralized manner. Structured overlay
� The work presented in this paper was supported (in part) by the National Com-

petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322 and was (partly) carried out in the framework of the EPFL
Center for Global Computing and supported by the Swiss National Funding Agency
OFES as part of the European project Evergrow No 001935.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 7–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

8 A. Datta and K. Aberer

networks have come to be recognized as a generic substrate which can facilitate
resource discovery in a decentralized fashion [3,9,12,13,14,16,17,18].

Even while the peer-to-peer research community prides itself to be pushing
the limits of networked distributed systems, it has so far ignored a fundamen-
tal and realistic problem for structured overlays that any distributed system
needs to deal with - that of making two partitions of such a system merge to
become one. One can speculate several reasons for such omissions in structured
overlay network research. (i) Merger of isolated overlays is trivially resolved in
unstructured overlays, which is where most of the empirical information of P2P
research so far has been derived from. (ii) Until recently, there has not been any
real structured overlay implementations deployed and hence the problem not
identified. (iii) The recent deployments and experiments have typically [1,15]
been under a controlled setting, where some central coordination like the use of
a common set of bootstrap nodes has been used with the intention and sufficient
coordination to construct only one overlay, making sure that independent and
distinct overlays are not created. Moreover, none of these experiments with real
implementations looked specifically for, or even accidentally, encounter network
partitioning problems.

Apart network partitioning which can lead to the creation of two disjoint
overlay networks there is a more likely scenario. It may so happen that disjoint
overlay networks (using the same protocols) are formed over time by disjoint
group of users. One may imagine that an overlay P2P network caters to a specific
interest group from a particular geographic area who participate in an overlay
network. At a later time, upon discovering a hitherto unknown group of like-mind
users from a different part of the world, who use their own “private” network
(using same protocols), these two groups may want to merge their networks in
order to benefit from their mutual resources (like content or knowledge). In fact,
such isolated overlay networks may result because of initial isolation of groups
because of various reasons including geographic, social or administrative - a large
company or country, which may originally restrict their users from interacting
with outsiders in the overlay, and changes the policy at a later time - or purely
because of partitioning of the physical infrastructure.

Structured overlays have often been touted as a generic substrate for other
applications and services. Ideally, there will be one or few such universal over-
lays [5] which will be used by a plethora of other P2P applications. Realizing
such an universal service too will need the possibility to merge originally iso-
lated networks. Small overlays can be built independently, which may later be
all merged together incrementally into a single overlay network.

One can thus imagine isolated islands of functional overlays catering to their
individual participants. Someday, some member from one of these overlays may
discover a member from another overlay. The natural thing to do then would
be to merge the two originally isolated overlays into a single overlay network. In
simple file-sharing networks, the motivation of doing so will be to make accessible
content from both the networks to all the users. Similar conclusions can be drawn
for various other conceivable applications of overlay networks.

The Challenges of Merging Two Similar Structured Overlays 9

In unstructured overlay networks (like Gnutella), merger of two originally
isolated overlays happens trivially. Whichever peers from two originally isolated
networks come in contact with each other need to establish mutual neighborhood
relationship, and then onwards just need to forward/route messages to each other
as they do with all other neighbors. That’s all! Likewise, hierarchical (super-peer
based) unstructured overlays also merge together trivially. This is because no
peer has any specific responsibility and can potentially be responsible for any
and all resources in the network.

Recent years have seen an increasing advocacy of structured overlays, because
of the efficiency and completeness1 their guarantees. There has been intensive
study of structured overlays, looking primarily in three important aspects of such
an infrastructure - (i) the topology of the routing network and the correspond-
ing routing algorithms, (ii) resilience of such network under churn (membership
dynamics) and (iii) load-balancing. These are critical issues that needed to be
addressed in order to build practical structured overlay networks which can be
deployed over the internet. The last five years of overlay related research con-
centrated on these issues. However, the issue of merger of structured overlays
has so far not only not been addressed but has even hardly been recognized,2

possibly because of the preoccupation of the P2P community with the other
above mentioned infrastructure issues, which were necessary even to begin with
development of actual software that could be deployed.

In this paper we take a first look at how and whether such merger can be
achieved. And at what cost in terms of algorithmic complexity and development,
as well as in terms of operational cost (bandwidth) and performance (interrup-
tion of service).

We do a case study for two structured overlays - ring based overlay (like Chord)
and P-Grid, in order to identify the properties of an overlay network which would
facilitate or hinder successful merger of distinct (but using the same protocols)
overlay networks. These two networks, apart from being two of the few structured
overlayswhich have really been implemented, benchmarked and deployed, also are
representative of two very different design principles. Chord relies on the principle
of maintaining what is called the ring invariant in order to guarantee functionality
of the overlay network in presence of membership dynamics (churn). Maintaining
the ring under churn is relatively straightforward and provides good resilience [8].
P-Grid uses prefix-based routing (PRR [13] topology). Such topology has been
shown to have poorer static resilience than a ring based topology [8]. P-Grid al-
leviates the problem, and still avoids the use of maintaining a ring by using a dif-
ferent way to provide redundancy - which we call structural replication. This has
been shown to provide very good dynamic resilience [2].

In a ring, there is a strict notion of ordering among all the peers, and the key-
space partition these peers are responsible for. This strict ordering is exploited in

1 Recall in terms of information retrieval terminology.
2 The technical report version of the original Chord proposal makes a passing remark

on the merger of isolated overlays. SkipNet [9] addresses a very special case of network
partitioning which is not usable in the general case.

10 A. Datta and K. Aberer

defining the overlay topology and keeping it connected and to guarantee routing.
In contrast, structural replication explicitly allows multiple peers to be respon-
sible for the same key-space partition.

By structural replication we mean that (i) multiple peers can be responsible
for the exactly same key space partition, i.e., these peers are mutual replicas;
and (ii) each peer has multiple (functionally redundant) routing references which
reduce the distance between source and destination by the same magnitude
(probabilistically). CAN [14] uses similar key-space partition replication and
calls it zone replication.

2 Background

In recent years the concept of structured overlays have attracted a lot of attention
because of its potential to become a generic substrate for internet scale applica-
tions - as diverse as locating resources in a wide area network in a decentralized
manner, address independent and robust and flexible (group) communication -
e.g., application layer multicast and internet indirection infrastructure and con-
tent distribution network to name a few.

Structured overlay networks comprise of the three following principal ingre-
dients:

(i) Partitioning of the key-space (say an interval or circle representing the real
number between the range [0, 1]) among peers, so that each peer is responsible
for a specific key space partition. By being responsible, we mean that a peer
responsible for a particular key-space partition should have all the resources
which are mapped into keys which are in the respective key-space partition.

(ii) A graph embedding/topology among these partitions (or peers) which en-
sures full connectivity of the partitions, desirably even under churn (peer mem-
bership dynamics), so that any partition can be reached from any partition to
any other - reliably and preferably, efficiently.

(iii) A routing algorithm which enables the traversal of messages (query for-
warding), in order to complete specific search requests (for keys).

Various applications can use transparently the (dynamic) binding between
peers and their corresponding key-space partitions as provided by the overlay
for resource discovery and communication purposes in a wide area network.

A structured overlay network thus needs to meet two goals to be functionally
correct:

(i) Correctness of routing: Starting from any peer, it should be possible to
reach the correct peer(s) which are responsible for a specific resource (key).

(ii) Correctness and completeness of keys-to-peers binding: Any and all peers
responsible for a particular key-space partition should have all the corresponding
keys (and none other).

Correctness of routing is achieved by maintaining the peers’ routing tables
correctly and using a proper routing algorithm. Correctness and completeness

The Challenges of Merging Two Similar Structured Overlays 11

of binding is achieved by moving the corresponding keys (content) as and when
the partition a particular peer is responsible for changes, and synchronizing the
content among replica peers.

Most structured overlays use the ring topology, or a hybrid one [16], relying
on a strongly connected ring for functional correctness of routing in the over-
lay, while the rest of the connections among peers provide optimization, i.e.,
efficiency. Replication is done in immediate neighbors on the ring and hence is
deterministic as long as the ring is maintained correctly. This ensures the cor-
rectness (and completeness) of keys-to-peers binding. Hence, in our case study,
one candidate we consider is the Chord [17] overlay - which not only pioneered
the ring topology in the context of structured overlays, but also is one of the
most extensively studied and developed system.

Both because of the well developed algorithms of Chord to maintain the ring
topology, as well as the relative ease in doing so and better static resilience than
other topologies [8] of the ring topology, it is predominantly used in other overlays.

We’ll show that when it comes to merger of two networks, the reliance on the
ring for functional correctness of the overlay is in fact a liability - hard to achieve
- very slow and costly in terms of communication complexity and in terms of the
required coordination. Merger of two ring based networks disrupt completely the
operations of the overlay, and hence the functioning of other applications and
services using it.

The other overlaywe consider is the P-Grid [3] network,which apart using prefix
based routing [13] uses an (almost) unique feature - structural replication - in order
to provide resilience against churn [2], instead of relying on the ring invariant used
by most other overlays. With the use of structural replication, the correctness of
routing is never violated even under network mergers. However completeness of
keys-to-peers binding is harder to achieve. Thus merger of structurally replicated
overlays is graceful because the applications running on top of the original overlays
will always have access to all the resources they had access to in their isolated
overlays, but discovery (and hence, access) to resources from the originally other
overlay will be possible only when the peers (replicas) for the corresponding key-
space partition(s) have synchronized.

We’ll like to emphasize that this case study is not a quantitative evaluation to
come out with a final verdict on any specific overlay - each of Chord and P-Grid
networks have many nice, sometimes complimentary features as well as short-
comings - making each better suitable for different application requirements. The
essential goal here is to explore the design space to better identify the features
of overlay networks that can either facilitate or hinder merger of overlays - and
hence get a better insight for (re-)designing such systems.

3 Network Merger Case-Study: Chord

3.1 Chord (Recapitulation)

Chord uses SHA-1 based consistent hashing to generate m-bit identifier for each
peer p, which is mapped onto a circular identifier space (key-space). Irrespective of

12 A. Datta and K. Aberer

how the peers’ identifiers and keys are generated in a ring based topology, what is
essential is that the peer identifiers are distinct. Similarly, unique keys are gener-
ated corresponding to each resource. Each key on the key-space is mapped to the
peer with the least identifier greater or equal to key, and this peer is called key’s
successor. Thus to say, this peer is responsible for the corresponding resource.

What is relevant for our study is how keys from the key-space are associ-
ated with some peer(s) and how the peers are interconnected (in a ring) and
communicate among themselves.

Definition 1. A ring network is (1) weakly stable if, for all nodes p, we have
predecessor(successor(p)) = p; (2) strongly stable if, in addition, there exists
no peer s on the identifier space where p < s < q where successor(p) = q; and
(3) loopy if it is weakly but not strongly stable.

Condition (2) that there exists no peer s on the identifier space where p < s < q
if p and q know each other as mutual successor and predecessor determines
the correctness of the ring structure. Figure 1(a) shows one such consistent ring
structure (peer’s position in the ring and its routing table). The order-1 successor
known also just as “successor” of each peer is the peer closest (clock-wise) on
the key-space.

If at any time such a s joins the system, the successor and predecessor in-
formation needs to be corrected at each of p, q and s. Maintaining the ring is
basically to maintain the correctness of successors for all peers - this in turn
provides the functional correctness of the overlay - i.e., successor peer for any
identifier key can be reached from any other peer in the system (by traversing
the ring). For redundancy, fs consecutive successors of each peer is typically
maintained, so that the ring invariant is violated only when any fs consecutive
peers in the identifier space all depart the system before a ring maintenance
mechanism - Chord’s self-stabilization algorithm - can amend for the changes.

In addition to the successor/predecessor information, each peer maintains
routing information to some other distant peersin order to reduce the communi-
cation cost and latency. It is the way these long ranges are chosen which differ
in many ring topology networks. It has no critical impact on the functional cor-
rectness of the overlay. The original Chord proposal advocated the deterministic
use of the successor of the identifier (p + 2k−1) modulo 2m as an order-k succes-
sor of peer p or a finger table entry.Many other variants for choosing the long
range links exist - e.g., randomized choice from the interval [p + 2k−1, p + 2k) or
exploiting small-world topology [11,4] to name a few.

Ring Self-stabilization Highlights. The ring invariant is typically violated
when new peers join the network, or existing ones leave it. If such events occur
simultaneously at disjoint parts of the ring, the ring invariant can easily be
reestablished using local interactions among the affected peers. Note that these
events do not lead to a loopy state of the network.

Apart looking into the simple violations of the ring invariant which are rela-
tively easily solved, the original Chord proposal (technical report version) also
provides mechanisms to arrive at a strongly stable network starting from a loopy

The Challenges of Merging Two Similar Structured Overlays 13

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15

1,2,3: 6
4: 12

Routing table entries
k : order k-successor
(deterministic chord) 1,2: 8

3: 12
4: 1

1,2,3: 12
4: 1

1,2,3: 1
4: 6

N1

(a) A consistent Chord network N1

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15 1,2: 5
3: 10
4: 14

1,2,3: 10
4: 14

1,2,3: 14
4: 3

1,2: 0
3: 3
4: 10

1,2: 3
3: 5
4: 10

N = N1+ N2

1,2,3: 6
4: 12

1,2: 8
3: 12
4: 1

1,2,3: 12
4: 1

1,2,3: 1
4: 6

k: incorrect routing entry
Incorrect successor is critical!

(b) Peers from two Chord networks meet

0

4

8

12

1

2

3

5

6

79

10

11

13

14

15 1,2: 5
3: 10
4: 14

1,2,3: 10
4: 14

1,2,3: 14
4: 3

1,2: 0
3: 3
4: 10

1,2: 3
3: 5
4: 10

N

1,2,3: 6
4: 12

1,2: 8
3: 12
4: 1

1,2,3: 12
4: 1

1,2,3: 1
4: 6

(c) Ideal Chord network comprising peers
from both networks

Fig. 1. When (peers from) two ring-based overlays meet

network (whichsoever reason such a loopy state is reached). We summarize the
results of stabilizing a loopy network here.

Any connected ring network with N peers becomes strongly stable within
O(N2) rounds of strong stabilization if no new membership changes occur in the
system. Starting from an arbitrary connected state with successor lists of length
O(logN) if the failures rate is such that at most N/2 nodes fail in Ω(logN) steps
then, whp, in O(N3) rounds, the network is strongly stable.

3.2 Merger of Two Ring Based Networks

Consider two Chord networks N1 and N2 with N1 and N2 peers respectively
(e.g., shown superimposed in Figure 1(b)).

When peers from different overlays meet: When peers from the two differ-
ent overlays meet each other (by whatsoever reason - accidentally or deliberately),

14 A. Datta and K. Aberer

in a decentralized setting there is no way for them to ascertain that they belong to
two completely different systems. This is so because overlay construction always
relies on such peer meetings to start with. As a consequence, if the peer pair that
meets have identifiers such that they would replace their respective successor and
predecessor, then they will indeed do that.For our example from Figure 1(b) lets
say peer 1 from N1 meets peer 0 from N2. Then peer 1 will treat 0 as its new pre-
decessor, and 0 will treat 1 as its new successor, instead of 12 and 3 respectively.
However, if they only change their local information, then the ring network will no
more be strongly stable (may in-fact not even be weakly stable). In-fact such a re-
configuration will need and lead to a cascading effect, so that all members of both
the original network try to discover the appropriate immediate neighbors (succes-
sor/predecessor) - requiring coordination among all the peers.

Estimation of the probability that a peer’s predecessor changes: From
the perspective of any peer inN1, the successor will change, if at least 1 out of the
N2 peers have identifier within the next 1/N1 stretch of the key-space (for which its
present successor is responsible, on an average).Anyparticular peer fromN2has an
identifier for this stretch with probability 1/N1. The number of peers falling in this
stretch is thus distributed as Binomial(N2, 1/N1), which approaches to a Poisson
distribution with expectation N2/N1 as N2 →∞. Hence, a peer fromN1 will have
its successor unchangedwith probability e−λ1 whereλ1 = N2/N1. Thus each of the
N1 peers will have their successor node changed with a probability 1− e−λ1 i.i.d.
Peers in N2 will be affected similarly with a parameter λ2 = N1/N2 (symmetry).

Estimate of the number of peer pairs which will have their imme-
diate neighbors (either successor and/or predecessor) changed: The
number of peers whose successor will change in Ni is then distributed binomi-
ally Binomial(Ni, 1 − e−λi) for i =1,2. Hence the expected number of nodes
which will need to correct their successor nodes (and predecessor nodes) is
N1(1− e−λ1) + N2(1 − e−λ2).

The basic idea of how the ring can be reestablished is that when two peers
from different networks meet so that they replace each other’s successor and pre-
decessor (immediate neighbor), then this information needs to be communicated
to the original immediate neighbors, and the process continues.

There are several combinations of how the neighborhoods of the peers are
affected after their interaction, each of which needs to be accounted for the actual
network merger algorithm. Moreover, different combinations of faults (single or
multiple peers crashing or leaving) can happen during the ring merger, and these
too need to be dealt with. The specifics of such algorithms, and evaluation of
the actual ring network merger algorithm is currently underway.

We’d like to admit at this juncture that without proper and exhaustive evalu-
ation of the exact algorithms for merging two ring networks, it is difficult to see
whether a strongly stable ring can be directly achieved, or whether a sequence
of faults during the merger of two rings can even lead to a loopy network, which
would then require even more effort to converge to a strongly stable state using
Chord’s already existing self-stabilizing mechanisms.

The Challenges of Merging Two Similar Structured Overlays 15

Thus the back of the envelope analysis above just provides the expected
lower-bound of the ring reestablishment process in terms of correction of succes-
sor/predecessors. The latency of such a process started because of two peers from
the two networks will be O(N1 + N2) even in there is no membership changes
during the whole merger process - this is the time required to percolate the in-
formation that the ring neighborhood has changed and to discover the correct
neighbor when peers from both the original networks are considered together.

RingLosesBearing During the Merge Process. Above we provided a sketch
of how to only reestablish the ring topology - which only guarantees the functional
correctness of the routing process - i.e., the query will be routed to the peer which
is supposed to be responsible for the key-space to which the queried key belongs.

Reestablishing the ring will be necessary in order to be able to query and locate
even the objects which were accessible in the original network of any individual
network. Hence, such a merger operation of ring topology based overlay will
typically cause a complete interruption of the overlay’s functioning.3

Managing Keys on the Merged Ring. Establishing the ring in itself is
however not sufficient in an overlay network based index. In order to really find
all keys (which originally existed in at least one of the two networks) from any
peer in the merged network, it will still be necessary to transfer the corresponding
key/value data to the “possibly” different peer which has become responsible for
the new overlay. To make things worse, in a ring based network the queries will
be routed to the new peer which is responsible for a key, so that even after the
reestablishment of the ring itself, some keys that could be found in the original
networks may not be immediately accessible, and will need to wait until the keys
are moved to the new corresponding peer.

Lets consider that before the networks started merging, network Ni had key
set Di such that |Di| = Di. Furthermore, if we consider that α fraction of the
keys in the two networks is exclusive, that is |D1 ∩ D2| = α|D1 ∪ D2|, then on
an average, if a Ni node’s successor changes, it will be necessary to transfer on
an average α fraction of the data from network Nj ’s 1

N1+N2
stretch of the key-

space. Thus, on an average, the minimum4 required transfer of unique data from
members of original networks Nj to Ni will be Dj→i

tx = N1(1 − e−λ1)α D2
N1+N2

.
Apart from assigning the data corresponding to a key on the key-space to

the peer which is the successor for that key, ring based topologies provide
fault-tolerance by replicating the same data at f consecutive peers on the ring.5

3 We’d like to note that such a vulnerability may expose ring topologies to a new kind
of “throwing rings into the ring” distributed denial of service (DDoS) attack, though
the implications of such an attack and the amount of resources an adversary will
require to make such a DDoS attack needs to be studied in greater detail.

4 The actual implementation of such a data transfer will need to identify the distinct
data in the two networks and transfer only the non-intersecting one, in order to
achieve this minimal effort. This is an orthogonal but important practical issue that
any implementation will need to look into.

5 The parameter f is a predetermined global constant determined by the system de-
signer.

16 A. Datta and K. Aberer

Given the strict choice of f as neighborhood changes, the transferred data will
in-fact have to be replicated at the precise f consecutive peers of the merged net-
work, determining the actual minimal bandwidth consumption. Similarly, some
of the original f replicas will need to discard the originally replicated content.

4 Network Merger Case-Study: P-Grid

4.1 The P-Grid Routing Network

P-Grid divides the key-space in mutually exclusive partitions so that the parti-
tions may be represented as a prefix-free set Π ⊆ {0, 1}∗. Stored data items are
identified by keys in K ⊆ {0, 1}∗. We assume that all keys have length that is at
least the maximal length of the elements in Π , i.e.,

min
k∈K
|k| ≥ max

π∈Π
|π| = πmax

Each key belongs uniquely to one partition because of the fact that the parti-
tions are mutually exclusive, that is, different elements in Π are not in a prefix
relationship, and thus define a radix-exchange trie.

π, π′ ∈ Π ⇒ π
⊆ π′ ∧ π′
⊆ π

where π ⊆ π′ denotes the prefix relationship. These partitions also exhaust the
key-space, so to say, the key-space is completely covered by these partitions so
that each key belongs to one and only one (because of exclusivity) partition.

In P-Grid each peer p ∈ P is associated with a leaf of the binary tree, and each
leaf has at-least one peer associated to itself. Each leaf corresponds to a binary
string π ∈ Π , also called the key-space partition. Thus each peer p is associated
with a path π(p). For search, the peer stores for each prefix π(p, l) of π(p) of
length l a set of references ρ(p, l) to peers q with property π(p, l) = π(q, l), where
π is the binary string π with the last bit inverted. This means that at each level
of the tree the peer has references to some other peers that do not pertain to the
peer’s subtree at that level which enables the implementation of prefix routing
for efficient search. The whole routing table at peer p is then represented as ρ(p)
Moreover, the actual instance of the P-Grid is determined by the randomized
choices made at each peer for each level out of a much larger combination of
choices. The cost for storing the references and the associated maintenance cost
scale as they are bounded by the depth of the underlying binary tree. This also
bounds the search time and communication cost. Figure 2(a) shows instances of
P-Grid network (peer’s path and routing table). e.g., in N1, peers A and F are
mutual replicas and are responsible for the key-space with prefix 00. Peer A’s
routing table comprise of peers C and D from the partition with prefix 1 and
peer B from the partition with prefix 01.

Each peer stores a set of data items δ(p). For d ∈ δ(p) the binary key κ(d)
is calculated using an order-preserving hash function. κ(d) has π(p) as prefix
but it is not excluded that temporarily also other data items are stored at a

The Challenges of Merging Two Similar Structured Overlays 17

00*

0*

01*

1*

10* 11*

AA FF BB CC DD EE

1* : C, D
01* : B

1* : E
01* : B

1* : C, D
00* : F

0* : A, B
11* : E

0* : A, F
11* : E

0* : B, F
10* : D

HH GG

1* : E, D
00* : A

00*

0*

01*

1*

UU ZZ WW

XX YY

1* : X
01* :W

1* : Y
01* : Q

1* : X
00* : Z

0* : U, W 0* : Z, WQQ

1* : Y
00* : U

0* : H, F
10* : C

N1

N2

(a) Peers from two P-Grid networks meet

00*

0*

01*

1*

10* 11*

AA FF

1* : C, D
01* : B

1* : E
01* : B

UU ZZ

1* : X
01* :W

1* : Y
01* : Q

BB

1* : C, D
00* : F

HH

1* : E, D
00* : A

WW

1* : X
00* : Z

QQ

1* : Y
00* : U

CC DD

0* : A, B
11* : E

0* : A, F
11* : E

XX

0* : U, W
11* : E

YY

0* : Z, W
10* : C

EE

0* : B, F
10* : D

GG

0* : H, F
10* : C

Peers with same path
become mutual replicas and

use anti-entropy to synchronize content,
and

gossip random routing entries
for

redundancy and randomization

Peers with less specialized paths
become replica of some peer with longer path

(using the joining algorithm)
and synchronize content

and borrow routing table information

N = N1+ N2

(b) Ideal P-Grid network comprising peers from both
networks

Fig. 2. When (peers from) two structurally replicated overlays meet

peer, that is, the set δ(p, π(p)) of data items whose key matches π(p) can be a
proper subset of δ(p). Moreover, for fault-tolerance, query load-balancing and
hot-spot handling, multiple peers are associated with the same key-space par-
tition (structural replication). �(κ) represents the set of peers replicating the
object corresponding to key κ. Peers additionally also maintain references to
peers with the same path, i.e., their replicas �(π(p)), and use epidemic algo-
rithms to maintain replica consistency. Routing in P-Grid is greedy.

4.2 Merger of Two Structurally Replicated Networks

When peers from different overlays meet: A resulting merged overlay net-
work when peers from networks N1 and N2 meet is shown in Figure 2(b).

18 A. Datta and K. Aberer

If peers from the two different networks meet, so that their paths are exactly
the same (for example peers A and U from networks N1 and N2 respectively in
Figure 2(a)), then they will execute an anti-entropy algorithm to reconcile their
content and become mutual structural replicas. In fact, such an anti-entropy
algorithm will have to be run among all the other structural replicas of that part
of the key-space too, and eventually of the other parts as well. However, since the
original members of each network still retain the original routing links, routing
functionality is not affected - and whichever keys were originally accessible will
continue to be accessible. So to say, peer C will always be able to access all the
keys/content available at A before the merger process. The keys from the same
key-space which were present in the other network would however be available
only after the background replication synchronization has completed. That is to
say, a resource available originally only in N2 at U and Z (but with the same
prefix 00 as A) will be visible to C only when A has synchronized its content
with any one of U or Z.

Use of structural replication has an additional downside - by not limiting the
number of replicas nor having a proper structure among the replicas, it is difficult
to have knowledge of the full replica subnetwork at each peer, and hence updates
and replica synchronization is typically probabilistic. In contrast, once the ring
is reestablished, replica positions are deterministic and hence locating replica
is trivial in ring based topologies. Having discovered a replica, the anti-entropy
algorithm itself (is an orthogonal issue) and hence the cost of synchronization of
a pair of peers will be the same.

When two peers from N1 and N2 meet so that one’s path is strictly a prefix
of the other peer’ path, then the peer with shorter path can execute a normal
network joining algorithm [3] - extending its path to replicate either the peer
it met, or a peer this peer refers it to. For example, Y may extend its path
from 1 to 11. In order to do so, Y will need to synchronize its content with one
of the peers which originally had the path 11, say G. Moreover Y will need to
obtain routing reference to a peer responsible for the path 10 (e.g., peer C) -
information it can obtain from G itself.

Since new peers join as structural replica or existing peers, no other existing
peer need necessarily to update their routing table for routing functionality (unlike
in a ring based topology). Thus, peer Q referring to Y for prefix 1 continues to refer
to it as such, and any query 10 from Q is routed first to Y , which then forwards it
to - say C. Peers may however, over time add more routing entries, for instance, Q
adding a reference to D for redundancy in its routing table for the prefix 1. Such
changes however is a normal process in the P-Grid network and can be carried on
in the background, again without interrupting the functioning of the overlay (and
in fact instead making it more resilient to faults and churn).

Consequently, neither joining peers, nor merger of two existing overlay net-
work disrupt the available functionality of the network members.6

6 Note that the above discussion is true only for write once and then onwards read-
only data, since for read/write, it will be necessary to maintain the replicas more
pro-actively.

The Challenges of Merging Two Similar Structured Overlays 19

If peers with different paths meet each other, they need to do nothing, though
they can refer each other to peers which are most likely to have the same path
(similar to ring based topologies which can forward the peers closer to their
respective key-spaces).

Managing Keys in the Merged Network. The amount of data that needs
to be transferred from each system to the other is essentially the non-intersecting
data. However, there is no need to transfer data from one peer to another merely
because the key-space partition a peer is responsible for changes - because with
structural replication, new peer joins or network mergers do not in itself auto-
matically change the network’s structure.7

The important thing to reemphasize is that a peer always finds the keys
it could find before the merger process began, irrespective of the state of the
merger process. Hence the replica synchronization can be done as a slow back-
ground process - hence the performance and network usage is also graceful - that
is, merger of two overlays does not suddenly overburden the physical network’s
resources nor disrupt the functioning of the overlay networks. Such a grace-
ful merger of existing networks also facilitates highly parallelized overlay con-
struction [3] in contrast to the traditional sequential overlay construction ap-
proaches.

5 Related Work

There is very little specifically looking into network partitioning issues of over-
lays. The only system which explicitly discusses the network partitioning issue
is SkipNet [9]. SkipNet is based on ring topology and imposes a restriction on
the peers’ identifiers in that nodes from same administrative domain get con-
tiguous exclusive stretch of the overlay. Thus if the domain gets partitioned, all
the nodes are contiguous on the identifier space and thus reconstructing the two
rings is relatively easy. However such restrictions have serious implications on the
general purposes in which the SkipNet can be used. Particularly their approach
does not in any way solve the problems faced by most other overlays. Following
their principles, if private overlays are first formed, either these overlays will
use a minuscule portion of the key-space - which is unrealistic - particularly if
its not known if and when new overlays need to be merged, otherwise, each of
these private overlays will again overlap on the key-space (not be contiguous),
and thus we’d again have the ring reestablishment problem as studied in this
paper. Moreover, in order to find a resource, the query needs to know not only
the resource name, but also the domain it can be found - which may be fine for
specific applications but is very restrictive in general.

Canon [7] proposes organization of isolated overlays in a hierarchical fash-
ion, and requires merger of the rings. However, they have not investigated the
7 Local view of the structure however changes when a peer with shorter path meets a

peer with longer path, and extends its own path according to the network construc-
tion algorithm [3], as explained above.

20 A. Datta and K. Aberer

complexity of ring mergers.8 Moreover, placement of keys in Canon is again
either domain specific, so that peers from different domains may/may not find
the keys. Such ambiguity (no guarantees on recall!) severely limits applications
for which Canon may be used.

5.1 Network Dynamics

Merger of two overlays, seen from the perspective of individual peers (which is
how these decentralized systems operate) can look very similar to simple mem-
bership dynamics, churn!

However, churn is a gradual process, and the system needs to continuously
perform repair operations to rectify local view of peers in order to deal with the
continuous membership changes. When two isolated networks need to merge, the
magnitude of the population change with respect to their original population
size is very high. In fact, if we consider merger of two same-sized overlays, it’d
essentially mean a vanishing half-life [10], without giving any time to the usual
overlay maintenance operations to deal with the changes in the network. This
also means that mechanisms other than what are employed to deal with normal
churn needs to be developed. Even so, we try to reuse tools and ideas already
honed in dealing with churn.

At this juncture, it is also worthwhile to point out that since merger of two
networks is indistinguishable from normal churn from the perspective of individ-
ual peers, it is not obvious when to use the network merger algorithms.

5.2 Portability

Over the last few years, there has been tens (possibly even running close to a
hundred) different topologies defined for structured overlays, of which some have
seen sustained development and deployment - including Chord [17], Kadem-
lia [12], Pastry/Bamboo [16,15] and P-Grid [3]. Nonetheless, these are diverse
systems using different protocols. To that end, there has been effort to identify
common APIs [1,6,15] that can make development of applications modular and
independent of the underlying overlay infrastructure.

Intercommunication of peers based on different implementations and protocols
has been relatively better explored - possibly because of the proliferation of nu-
merous overlay topology proposals as well as different implementation/protocols
of theoretically equivalent networks - leading to these rather numerous tentative
proposals for universal APIs.

The problem of merger of two distinct overlays (but using the same protocols)
is somewhat different from how peers across different overlay networks using
different protocols can communicate among themselves, or how applications can
be developed and run transparently on any overlay substrate.

8 The simulations they have seem to have merged the rings automatically. One can
only speculate that most likely the new rings were formed using the global knowledge
of the simulator in a manner a centralized system would. To that end, our paper
exposes the complexity of achieving ring mergers.

The Challenges of Merging Two Similar Structured Overlays 21

6 Summary and Conclusion

This paper is a first step in looking at the problem of merging two separate
overlay networks. Depending of the peculiarities of a specific overlay - whether
it relies on the strong stability of the ring, or whether it uses structural repli-
cation, we identified the mechanisms which are necessary to execute the merger
process, indicated the minimal effort it will require in order to merge two net-
works as well as discussed the specific challenges that need to be met for practical
implementation of such an approach.

For managing data in any merged networks efficiently, it is necessary to use
an efficient anti-entropy algorithm, so that ideally non-intersecting data items
are identified efficiently and only those are exchanged among peers.

We also observed that the ring based networks can not function at all until
the whole merge process is complete. This may have serious consequences of
usability of ring based topologies, particularly if merger of two such overlay
networks becomes necessary.

In contrast, use of structural replication instead of the ring as a fault-tolerance
mechanism makes overlay mergers graceful. However, location of all structural
replicas may be tricky, and hence replica management in such a system is rela-
tively more complex than in ring based systems which has deterministic choice
of the location and size of the replica subnetwork.

The actual algorithmic details of merger of ring based overlays is still under
study and refinement, particularly looking into the potentially catastrophic com-
bination of faults that may occur during the long latency incurred in merging
two rings. Quantitative and comparative evaluation of network merger for ring
based networks and structurally replicated networks, along with precise finalized
algorithms to merge ring based networks thus is part of our ongoing and future
work.

References

1. K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi.
The essence of P2P: A reference architecture for overlay networks. In P2P2005,
The 5th IEEE International Conference on Peer-to-Peer Computing, 2005.

2. K. Aberer, A. Datta, and M. Hauswirth. Efficient, self-contained handling of iden-
tity in peer-to-peer systems. IEEE Transactions on Knowledge and Data Engi-
neering, 16(7), 2004.

3. K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing data-oriented over-
lay networks. 31st International Conference on Very Large Databases (VLDB),
2005.

4. A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable multi-
attribute range queries. In SIGCOMM, 2004.

5. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron. One Ring to Rule
Them All: Service Discovery and Binding in Structured Peer-to-Peer Overlay Net-
works. In ACM SIGOPS European Workshop, 2002.

6. F. Dabek, B. Zhao, P. Druschel, and I. Stoica. Towards a common API for struc-
tured peer-to-peer overlays. In IPTPS 2002.

22 A. Datta and K. Aberer

7. P. Ganesan, P. K. Gummadi, and H. Garcia-Molina. Canon in G Major: Designing
DHTs with Hierarchical Structure. In ICDCS, 2004.

8. K. Gummadi, R. Gummadi, S. Ratnasamy, S. Shenker, and I. Stoica. The Impact
of DHT Routing Geometry on Resilience and Proximity. In Proceedings of the
ACM SIGCOMM, 2003.

9. N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable
overlay network with practical locality properties. In USITS 2003, Seattle, WA,
March 2003.

10. D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the Evolution of
Peer-to-Peer Systems, 2002.

11. G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed Hashing in a
Small World. In USITS, 2003.

12. P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information System
Based on the XOR Metric. In IPTPS, 2002.

13. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of
Replicated Objects in a Distribute d Environment. In SPAA, 1997.

14. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In ACM SIGCOMM, 2001.

15. S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,
and H. Yu. OpenDHT: A Public DHT Service and Its Uses. In SIGCOMM, 2005.

16. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), 2001.

17. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A Scal-
able Peer-To-Peer Lookup Service for Internet Applications. In ACM SIGCOMM,
(Technical report version: http://pdos.csail.mit.edu/chord/papers/), 2001.

18. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-are location and routing. Technical Report UCB/CSD-01-1141,
UC Berkeley, 2001.

Self-protection in P2P Networks:
Choosing the Right Neighbourhood

Ivan Martinovic1, Christof Leng2, Frank A. Zdarsky1, Andreas Mauthe3,
Ralf Steinmetz4, and Jens B. Schmitt1

1 Distributed Computer Systems Lab, University of Kaiserslautern, Germany
2 Databases & Distributed Systems, University of Technology Darmstadt, Germany

3 Infolab 21, University of Lancaster, UK
4 Multimedia Communications Lab, University of Technology Darmstadt, Germany

Abstract. In unstructured peer-to-peer networks, as in real life, a good neigh-
bourhood is not only crucial for a peaceful sleep, but also for an exchange of
important gossips and for finding good service.

This work investigates self-protection mechanisms based on reputation in un-
structured peer-to-peer networks. We use a simple approach where each peer rates
the service provided by others and exchanges the collected knowledge with its
direct neighbours. Based on reputation values peers manage their connections to
direct neighbours and make service provisioning decisions.

To quantify the impact of our proposed scheme, we implement a simple proto-
col in a fully unstructured peer-to-peer network. We show that free riding and the
impact of malicious peers trying to poison the network with bad files is minimised.
Furthermore, we show that a good neighbourhood protects peers from selecting
bad files, while free riders suffer in a bad neighbourhood of malicious peers.

Keywords: Self-protection, Peer-to-Peer, Trustworthiness, Reputation, Free-
Riding, Network Poisoning.

1 Motivation

Network poisoning is a problem where malicious peers try to upload invalid files into
a peer-to-peer network. Although standard cryptographic solutions like hash functions
can help us to check the integrity of files, the impact of network poisoning has increased
dramatically in the last few years. The reason is that in a decentralised, large-scale net-
work where content is provided by the users themselves, one cannot easily transfer tech-
niques from centralised content delivery environments. Many peer-to-peer networks
have lost their popularity because the content provided within those networks is mostly
malicious (infected by virus) or invalid, wasting the users’ time and bandwidth. On
the other hand, there is an increasing number of decentralized systems using reputation
schemes as security measure to protect users and reward cooperative behaviour.

Recently, various research contributions studied the impact and strategies of network
poisoning and analyzed its magnitude within P2P networks [14,5]. In this work, we
analyse the concept of self-protection against network poisoning and free riding within
unstructured peer-to-peer networks by using concepts from soft-security and traditional

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 23–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

24 I. Martinovic et al.

security. We model our peer-to-peer network as a basic Gnutella network [12] without
any structure and extend it only by a simple protocol we call Simple Trust Exchange
Protocol (STEP), which enables peers to decide whom to connect to as direct neigh-
bours and to whom to provide service. As the result, a trust-based construction of an
overlay network is accomplished by local decisions.

To avoid the extreme case of individual “learning-by-doing” STEP provides a mech-
anism to exchange knowledge between its direct neighbours, which helps a neighbour-
hood to avoid selecting bad service or potentially malicious neighbours. Moreover, as
the search in unstructured networks is mostly based on different flooding algorithms,
having a good neighbourhood becomes essential for a peer’s own search success.

Although scaling problems of the original Gnutella network are well-known, we take
advantage of a fully unstructured network to avoid “deus ex machina” intervention and
to support the evolutionary growth of topology. Furthermore, the concept introduced in
this work does not depend on the flooding approach of Gnutella and could be adapted
to different routing mechanisms (e.g. Ultrapeers).

2 Simple Trust Exchange Protocol (STEP)

To support service rating and exchange of knowledge among neighbouring peers, we
introduce Simple Trust Exchange Protocol (STEP), the pseudo-anonymous token-based
protocol. A token is a mutually signed transaction receipt which serves as a proof of
service provision between a consumer and a provider (in all our scenarios we consider
a service to be a file transfer between a provider and a consumer, but clearly, other
scenarios are also conceivable). To participate in the system, every peer needs to create
a public-private key-pair as its identity. Because the identity has no ties to the outside
world and only becomes meaningful by a token signed with it, there is no need for any
public key infrastructure.

To discourage the change of identity, in this work we follow the idea of "no profit to
newcomers" [13], where every new peer gets the minimal possible reputation.

Table 1. Token Structure

Name Description

CID Consumer’s identity
PID Provider’s identity
TS Timestamp of token creation

Length Length/Duration of service (e.g. File size)
Rating Consumer’s rating ({good,bad})
CSig Consumer’s Signature
PSig Provider’s Signature

STEP relies on a peer-to-peer network to discover and deliver services and only ex-
tends systems by a token creation mechanism and knowledge exchange between peers.
The structure of a token is shown in Table 1.

Self-protection in P2P Networks: Choosing the Right Neighbourhood 25

2.1 Token Creation

A token is created upon a request of a service and is supplemented with rating after a
transaction has finished. Upon the service request a consumer creates an initial token
by filling the data fields except Rating and signs it with his private key. The consumer
sends the token and his public key to a provider. If the provider accepts the service
request he also signs the initial token and sends the token and his public key back to
the consumer. After the transaction the consumer rates the provider (filling the Rating
field) and finalizes the token by re-signing it. Finally, he sends a copy of the token to
the provider.

The objective behind the consumer’s double signing is to mitigate the incentives for
not finalizing the token. For example, a free-rider could decide to reject finalization and
publication of the token to avoid being detected as a consumer. In this case the initial
token containing the free-rider’s signature will be published by a provider. As a result,
other peers will be able to collect tokens and if the provider is trusted the free-rider can
still be detected.

2.2 Knowledge Exchange

Every peer can improve its own knowledge over another peer directly by requesting a
service and then rating it, or indirectly by collecting other ratings about that peer and
then using them to compute its own trust value.

Knowledge exchange between peers is realized through distribution of tokens within
an overlay network and by storing the received tokens locally. We use the Gnutella-
typical flooding approach for distributing tokens in a way similar to query for services.
The Knowledge message is wrapped in Gnutella Query messages to provide max-
imum compatibility with legacy peers in mixed networks, analogous to the approach
described in [8]. To enable the verification of a token, in case the local neighbours do
not have the required keys, a peer forwarding the token appends the missing public keys
of both, the consumer and provider, to the Knowledge message.

2.3 Decision Making

The computation of a peer’s reputation is a subjective matter and every peer can choose
its own method for interpreting the collected tokens. In this work we focus on the impact
of reputation and not on its calculation, which is why we use a simple approach of
calculating the number of collected tokens where the provider was rated as good, and
subtracting the tokens where the rating was bad. Although this mechanism does not
deal with nodes that are actively trying to cheat the reputation system (such as attacks
from malicious group of peers which can mutually sign tokens), STEP provides enough
room for implementation of more sophisticated algorithms. For example, one peer can
choose to follow the PGP’s “Web-of-Trust” concept by considering the trustworthiness
of both signatures, as well as by utilizing the transitivity of trust relationships (e.g. [4])
or more accurately computing reputation of token-based systems with a more complex
attacker model (e.g. [10]). Furthermore, a very restrictive approach would be to base
the trust computation only on a closed group od peers (similar concepts already exist
as “darknets” which represent a closed group of members within a public peer-to-peer
network).

26 I. Martinovic et al.

Search and Service Selection. After executing a Gnutella query and receiving search
results a peer can immediately compute a reputation of available provider peers based
on its local knowledge. The consumer peer then selects a file with a probability propor-
tional to the sum of reputations of all providers offering the same file [13].

Due to assigning a reputation with positive minimum to every peer, every provider
has the chance of being selected. This method decreases the overloading of a few top
providers and increases the chance of selecting a newly joined peer if it provides fre-
quently searched files.

Service Providing. After selecting a provider, a consumer sends a service request. If
there is enough free bandwidth for an upload connection, the provider grants the ser-
vice immediately to maximize the utilization of its bandwidth. Otherwise the provider
computes a reputation of the new consumer and compares it with the lowest reputa-
tion of those consumers already connected. If the reputation of the new consumer is
higher than that of any already connected consumers, the connection with the lowest
value is cancelled and replaced with a new one. Although it would be better to use a
non-preemptive queue to finish the already started file transfer instead of cancelling a
transaction in progress, Gnutella does not support such concept.

Choosing the Neighbourhood. In Gnutella, every peer has a minimum number of
desired neighbours (typically 4 for real-world Gnutella networks). If its current number
of neighbours is less then desired the peer actively tries to connect to more neighbours.
Instead of choosing the neighbours arbitrarily as in the classic Gnutella a STEP peer
tries to connect to neighbours with a reputation at least as high as its current neighbours.
If no such peers are available an arbitrary peer is chosen.

Most of the peers, depending on their bandwidth, support more than the minimum
number of neighbours and thus are able to accept incoming connection requests by new
peers. In the classic Gnutella every peer with available connection slots accepts all in-
coming connection requests. In STEP only requesting peers with a reputation that is in
average not lower than those of the current neighbours, are accepted. If the STEP peer has
reached the maximum number of Gnutella connections, then, for every further connec-
tion request the reputation of a requesting peer is compared with the local neighbourhood.
If a neighbour with a lower reputation is already connected, it will be replaced.

3 Experiments

Service mentioned in all of our scenarios is a file transfer and we have modelled 4
different peer profiles:

– Cooperative Peer: a peer that offers services to the network by sharing valid files,
– Freerider: an opportunistic peer that does not share any files but only requests ser-

vices,
– Foul Dealer: a malicious peer with a high bandwidth and maximum number of files

(highest probability to answer with QueryReply), which tries to upload invalid
files only (network poisoning),

– Good Dealer: opposite of the Foul Dealer, an altruistic peer with a high bandwidth
and a large number of valid files.

Self-protection in P2P Networks: Choosing the Right Neighbourhood 27

The profile of a Good Dealer is only for measurement purposes in order to better com-
pare the impact of good and bad dealers within a STEP-enhanced and legacy Gnutella
network.

3.1 Configuration

One of the advantages of using Gnutella for our investigation is the availability of rich
empirical data. To provide realistic assumptions of the peers’ online times and available
bandwidths, we have used empirical distributions based on the Gnutella analysis from
[16]. The file popularity distribution was also based on empirical data taken from [17]
which analysed the Kazaa peer-to-peer network. Other simulation parameters are listed
in Table 2.

Table 2. Simulation Parameters

Network Size 2048, 4096
Number of Files 192.000

Token Validity Time 10 h
Query Interval 2-4 min

Simulation Time 80 hours

The number of Free Riders was set to 50% for both network sizes and number of Foul
Dealers and Good Dealers was set to 64. The bandwidth was divided into upload- and
download streams which can be asymmetric to conform to a real peer-to-peer network
with heterogeneous peers (e.g. DSL users with 1024 Kbit/s downstream and 128 Kbit/s
upstream). The minimum bandwidth represent modem users with both upstream and
downstream of 32 KBit/s and the maximum bandwidth is a broadband user having 10
MBit/s for both directions. Both, Foul Dealer and Good Dealers are assumed to have
maximum bandwidth, where other peers follow empirical distributions from the real-
world statistics.

As the goal of this work was not to provide highly sophisticated mechanisms to
detect malicious behaviour we assume all peers conform to Gnutella and/or the STEP
protocol with the exception that every peer rated as bad will not publish tokens. The
service is rated as good if the file was sound and bad if not. Every peer makes a wrong
rating (unintentionally) with a probability of 5%. In the initialization phase, when a new
peer joins the network it randomly tries to connect to peers from a global peer cache.
Because of a long transient phase of network initialization, we simulated 80 hours of
network activity. This proved to be very important as the steady state was reached after
approximately 15 hours. All simulations were conducted on an Athlon XP 2500+ with
1 GB RAM and one simulation run took approximately 24 hours to finish. The memory
requirements of the simulation were 889 MB.

3.2 Results

Network Poisoning. In Figure 1 we analyse the impact of Foul Dealers and Good Deal-
ers on network poisoning by comparing the number of successful uploads of bad files

28 I. Martinovic et al.

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

U
pl

oa
d

(M
B

)
Good Dealer 30.571 20.924

Foul Dealer 4.706 21.324

STEP Legacy

Fig. 1. Network Poisoning

0

500

1000

1500

2000

2500

3000

3500

D
ow

nl
oa

ds

Cooperative 3.311 131 2.693 2.027

Freerider 2.242 640 2.748 2.036

STEP Good DL STEP Bad DL Legacy Good DL Legacy Bad DL

Fig. 2. Download Scenario

0,00

20,00

40,00

60,00

80,00

100,00

120,00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Cooperative Good Results

Cooperative Bad Results

Freerider Good Results

Freerider Bad Results

[h]

N
u

m
b

er
 o

f r
es

u
lt

 q
u

er
ie

s
(s

ea
rc

h
 re

su
lt

s)

Fig. 3. Search Results

within both scenarios. As it can be seen, in the STEP-enhanced scenario the impact of
Foul Dealers is decreased by 77% while the impact of Good Dealers is increased by 46%.

Figure 2 analyses the downloads between cooperative peers and free-riders, again for
the two scenarios. The total number of good downloads (cooperative and free-riders) re-
mains almost equal in both networks, but the number of good downloads of cooperative

Self-protection in P2P Networks: Choosing the Right Neighbourhood 29

peers is almost 20% higher than for free riders. In a legacy network there is no incentive
to behave cooperatively since all peers equally download good and bad files. Even more
interesting is the fact that there is only 13% bad downloads within the STEP-enhanced
network out of which 83% are performed by free-riders.

Furthermore, we measured the number of good and bad query results (a bad result
is service offered by a foul dealer) for both cooperative and free-rider peers when they
search for a specific file. As previously mentioned, the search in the Gnutella peer-to-
peer network is a simple flooding. Due to the limitation of flooding by a query’s TTL
counter, it is important for a peer to be in a good neighbourhood. As it can be seen in
Figure 3, the number of bad results for cooperative peers decreases dramatically, while
the free-riders are losing good results and gaining more bad results. The overall number
of query results is decreased after 15 hours as a result of neighbourhood clustering.

Knowledge. Figure 4 (left) shows local knowledge of a peer over all tokens in the
network. As it can be seen, after 15 hours the local knowledge covers over 40% of all
tokens existing in the network. The reason for its decrease after the first 15 hours is
the clustering of the network, when the good neighbourhood has been established and
tokens from the bad neighbourhood cannot reach most of the peers within the good
neighbourhood. The Figure 4 (right) shows the accuracy of a peer’s local knowledge
about every other peer. As a result, although every peer knows only 40% of all tokens in
the network it has on average 50% of all tokens associated to the peer when calculating
its reputation. This is due to the limited horizon of query and knowledge exchange
messages, both affected by the location of a peer in the overlay network in the same way.
Thus, the received tokens will be more related to providers’ and consumers’ reputations
actually calculated than tokens beyond the horizon, which never reached the peer.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 (hours)

Pe
er

’s
kn

o
w

le
d

g
e

ov
er

 o
th

er
 p

ee
r

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 (hours)

Pe
er

’s
kn

o
w

le
d

g
e

ov
er

 a
ll

to
ke

n
s

Fig. 4. Local Knowledge

Topology. Figure 5 shows topologies captured during the simulation times of 10h,
20h, 30h and 40h. After 40h the topology has stabilised and no significant changes
occured afterwards. A clear separation of neighbourhoods can be seen after 25 hours of
simulation where cooperative peers have distanced themselves from most of the Foul
Dealers creating a neighbourhood with the Free Riders.

There are still many connections between the neighbourhoods, but due to the TTL
scoping of Query and Knowledge messages most message exchanges remain inside

30 I. Martinovic et al.

Fig. 5. Topologies after 10h, 20h, 30h and 40h

neighbourhoods, resulting in decreased number of query results from remote neigh-
bourhoods. This also results in a decreased number of queries sent from free-riders to
good peers (and thus self-protecting) but also from other good neighbourhoods.

STEP Overhead. The Overhead of STEP can be mainly attributed (98%) to
Knowledge messages as they contain tokens and public keys. In the worst case every
token has 2 public keys and if the key length is set to 512 Bit every token costs 128
Bytes. Nevertheless we implemented a simple caching strategy where only new keys are
forwarded to direct neighbours decreasing the cost to only 0.6 keys per token and still
provide key distribution within fully unstructured peer-to-peer network. Furthermore,
the length of an average knowledge message was 750 Bytes and maximally 1500 Bytes.

As the result, we can state that the price to pay for STEP is a 28% increase in band-
width usage over standard Gnutella control message overhead; yet, its advantage is a
dramatical decrease in the number of bad downloads and enhanced incentives for co-
operative peers as they are now able to increase the utilization of their bandwidth with
valid downloads which are preferred over those of the free-riders.

4 Related Work

The problems caused by selfish and malicious participants in peer-to-peer and ad hoc
networks have been examined in several studies (e.g. [9,11,3,2]).

Self-protection in P2P Networks: Choosing the Right Neighbourhood 31

Probably the first to propose a practical solution based on traditional cryptography
and structured overlay networks were Aberer and Despotovic [1] using the P-Grid sys-
tem to store and retrieve complaints about misbehaving peers. The principle of “no
profit to newcomers” together with other design goals for peer-to-peer networks (self-
policing, anonymity, no profit to newcomers, minimal overhead, robust to malicious
collectives) has been described by Kamvar et al [13]. They created the EigenTrust peer-
to-peer reputation system according to those design goals. EigenTrust uses a distributed
way of approximating the global trust value of a peer. Damiani et al [8] proposed a dis-
tributed reputation system as an extension to Gnutella called P2PRep, with a seamless
migration path for existing Gnutella networks. Those integration concepts can be ap-
plied to our system in a similar fashion. Instead of using signed transaction receipts
they rely on a live poll of user opinions, which has its own advantages and disadvan-
tages. The usage of reputation as a trust building concept within a decentralised network
of WLAN providers was described by Efstathiou and Polyzos in [10]. They apply the
concept of a token-based reputation to a system they call a Peer-to-Peer Wireless Net-
work Confederation (P2PWNC). For reputation calculation they use a maximum flow
based algorithm called NWAY which is very resilient to cooperating groups of mali-
cious nodes. The tokens in their system are exchanged by interacting parties, instead of
the active publication mechanism we use.

Very interesting work on using trust to build an unstructured overlay network (Adap-
tive P2P Topologies) was introduced by Condie et al. [6]. Instead of a reputation system,
they count only the subjective experience of every node itself. This minimizes the over-
head of the protocol but also limits the available information on other peers. As the
result of their adaptive topologies, the malicious peers and free-riders are pushed to the
fringe of the network, which is similar to our work. However, the major difference is the
usage of tokens to avoid distribution of only subjective reports (gossips). We considered
the token mechanism to provide further advantages such as, choosing indivdual repu-
tation algorithms and support of the Web-of-Trust concept in a peer-to-peer network
where every peer can individually decide whose tokens can be more trusted based on
the providers and consumers signatures.

Furthermore, tokens constitute the basis for coordination and control mechanisms as
well as for pricing in commercial scenarios as described by Liebau et al. [15].

5 Conclusion and Future Work

This paper presents our initial work on trust in unstructured peer-to-peer networks.
Our objective is to investigate into more depth both, the impact and efficiency of self-
protecting mechanisms based on trust computation. We have chosen to use a completely
unstructured peer-to-peer network as it allows us to investigate impacts on topology, as
well as to support evolutionary growth of the network.

STEP defines a simple way to create transaction receipts and is adaptable to many
different methods for knowledge exchange. The algorithm presented here adapts the
Gnutella query method for maximum compatibility with legacy networks.

The Gnutella network is clearly not very scalable but many alternative routing mech-
anisms for message routing in peer-to-peer networks have been proposed in recent

32 I. Martinovic et al.

years. Alternatively, tokens can be accumulated at each intermediate peer and forwarded
in regular intervals to reduce the number of messages needed. Also, as a part of our fu-
ture work we intend to investigate how trust can be used for a better routing of search
messages to mitigated overloading of trusted peers and to create incentives against free-
riding. The idea of trust-based routing could help us to scale the efficiency of routing
scheme based on trustworthiness of a peer or a neighbourhood.

Furthermore, if the service provided by the peers is the upload of shared content,
the semantics of this content may also be used to achieve better routing of tokens,
which leads to a more precise reputation calculation and consequently to a better reor-
ganization of the overlay. It has been observed that content is normally clustered into
categories with most peers being active only in very few categories [7]. Therefore, the
interaction topology of such content distribution networks are typically highly clus-
tered. This circumstance may be used to distribute tokens to peers which can make use
of them more efficiently.

The STEP system is not only highly independent of the knowledge exchange method
but also of the choice of reputation algorithms such that every peer can choose an al-
gorithm independently. The choice of usable algorithms is very broad as every node
can store a relevant proportion of the globally available knowledge about rated peers.
To optimize the overall system performance the chosen algorithm should not only be
resilient against attacks, but should also provide good results even with little aggregated
data. To follow this idea, we consider not only token mechanisms, but also concepts of
accumulated gossiping for building trust within peer-to-peer networks.

References

1. K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Information System. In
CIKM ’01: Proceedings of the 10th International Conference on Information and Knowledge
Management, pages 310–317, 2001.

2. S. Buchegger and J.Y. Le Boudec. Performance analysis of the CONFIDANT protocol.
In MobiHoc ’02: Proceedings of the 3rd ACM International Symposium on Mobile Ad hoc
Networking & Computing, pages 226–236, 2002.

3. S. Buchegger and J.Y. Le Boudec. A Robust Reputation System for Mobile Ad-hoc. In
Proceedings of the Second Workshop on the Economics of Peer-to-Peer Systems, 2004.

4. S. Capkun, L. Buttyán, and J-P. Hubaux. Self-Organized Public-Key Management for Mobile
Ad Hoc Networks. IEEE Transactions on Mobile Computing, 2(1):52–64, 2003.

5. N. Christin, A. S. Weigend, and J. Chuang. Content Availability, Pollution and Poisoning in
File Sharing Peer-to-peer Networks. In EC ’05: Proceedings of the 6th ACM Conference on
Electronic commerce, pages 68–77, 2005.

6. T. Condie, S. D. Kamvar, and H. Garcia-Molina. Adaptive Peer-to-Peer Topologies. IEEE
Transactions On Systems, Man and Cybernetics, Part A, 35(3):385–395, May 2005.

7. A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. Technical
report, October 2002.

8. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. Managing and
Sharing Servents’ Reputations in P2P Systems. IEEE Transactions on Data and Knowledge
Engineering, 15(4):840–854, July 2003.

9. P. Dewan and P. Dasgupta. Pride: Peer-to-peer Reputation Infrastructure for Decentralized
Environments. In WWW Alt. ’04: Proceedings of the 13th International World Wide Web
Conference on Alternate Track Papers & Posters, pages 480–481, 2004.

Self-protection in P2P Networks: Choosing the Right Neighbourhood 33

10. E. C. Efstathiou, P. A. Frangoudis, and G. C. Polyzos. Stimulating Participation in Wireless
Community Networks. Technical report, June 2005.

11. M. Feldman and J. Chuang. Overcoming Free-riding Behavior in Peer-to-Peer Systems.
SIGcom Exch., 5(4):41–50, 2005.

12. Gnutella Developer Forum. The Annotated Gnutella Protocol Specification v0.4. http://rfc-
gnutella.sourceforge.net/developer, 2006.

13. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust Algorithm for Repu-
tation Management in P2P Networks. In WWW ’03: Proceedings of the 12th International
Conference on World Wide Web, pages 640–651, May 2003.

14. J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in P2P File Sharing Systems. In IEEE
INFOCOM, Miami, FL, USA, March 2005.

15. N. Liebau, V. Darlagiannis, A. Mauthe, and R. Steinmetz. Token-based Accounting for P2P-
Systems. In Proceeding of Kommunikation in Verteilten Systemen KiVS 2005, pages 16–28,
February 2005.

16. H. Luemkemann. Leistungsfaehige Verteilte Suche in Peer-to-Peer File-Sharing-Systemen.
Master Thesis, CS Department, University of Dortmund, 2002.

17. S. Saroiu, P. Gummadi, and S. Gribble. A Measurement Study of Peer-to-Peer File Shar-
ing Systems. In Proceedings of Multimedia Computing and Networking 2002 (MMCN’02),
January 2002.

Modelling the Population Dynamics and the File
Availability in a BitTorrent-Like P2P System

with Decreasing Peer Arrival Rate

Riikka Susitaival and Samuli Aalto

Helsinki University of Technology
P.O. Box 3000, FIN-02015 TKK, Finland

{riikka.susitaival, samuli.aalto}@tkk.fi

Abstract. Many measurement studies of P2P file sharing systems sug-
gest that the request rate for a file changes over time and the system
is thus non-stationary. For this reason we study the population dynam-
ics and the availability of a file in a BitTorrent-like file sharing system,
when the arrival rate for file requests decreases exponentially. We study
the system first by a deterministic fluid model and then by a more de-
tailed Markov chain analysis that allows estimating the life time of a
single chunk exactly. Simple approximation for the life time is also de-
rived. In addition, we simulate the life time of a file consisting multiple
chunks in order to verify the analytical results to be applicable also to a
more complex system.

1 Introduction

Peer-to-peer (P2P) applications, such as file sharing, have become a significant
area of Internet communication in recent years. Older examples of these appli-
cations are Gnutella, Napster and Kazaa, whereas BitTorrent is currently the
most popular file sharing system. It has been widely reported that P2P related
traffic forms a major part of the total traffic in the Internet and the share is
even increasing [1], [2].

The idea of BitTorrent is to divide the file into parts, named chunks, so that
different parts can be downloaded from several peers simultaneously, where the
size of the chunk is typically 256 KB. The technical details of BitTorrent are
skipped in this paper but can be found in [3]. According to performance studies
[4], BitTorrent is an effective P2P protocol and scales well even when the number
of participating peers is very high. In this paper we concentrate on BitTorrent-
like P2P protocol because of its popularity but the results are applicable to other
similar protocols as well.

Measurement studies [5], [6], [7], have shown that the evolution of a single file
in the system can be divided into three phases. In the first flash crowd phase the
demand for the newly released file is high. The flash crowd phase is followed by
a steady state in which the demand for the file and the service capacity of the
system are in balance. Due to the decentralized manner of BitTorrent, there are

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 34–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modelling the Population Dynamics and the File Availability 35

not any guarantees that all chunks of the file are present in the system over time.
If some chunk of the file is missing, the file is not complete anymore. Depending
on application, this might or might not be crucial. In this paper we assume the
former. This third phase of the system life time is called as end phase.

A few papers have analyzed P2P file sharing systems by stochastic models so
far. Yang et al. divide the analysis of BitTorrent-like system into transient and
steady state regimes [8]. The service capacity of the transient regime is studied
by a branching process and the steady state by a Markov model. Paper [4] studies
the performance of the system by a deterministic fluid model, whereas in paper
[9] the network level latencies are modeled by the delay of a single class open
queueing network and peer level latencies by the delay of M/G/1/K processor
sharing queues. However, these early studies do not capture all aforementioned
phases of the sharing process. The arrival rate is assumed to be constant, and
especially, the file is assumed to be complete forever.

More detailed models for BitTorrent-like P2P systems are provided in [10] and
[11]. Tian et al. study the integrity of the file in [10]. First, using Markov chain
modelling, the steady state solution for the number of downloaders holding a
certain number of chunks is derived and then the file availability is estimated
by a simple probabilistic model. Drawback of the paper is that the steady state
solution of the system is assumed to exist and the availability model is only
indicative. Paper [11] first proposes that arrival rate decreases exponentially
and studies then the system by a deterministic fluid model. The life time of the
system, i.e., the mean time from the appearance of the file until its disappearance
is derived by a simple deduction. However, the model is very coarse, and does
not take the dowload/upload time of the file into account, for example. As a
conclusion, the correct analytical models for file availability are missing and
should be studied in more detail.

In this paper we analyze the population dynamics of the P2P file sharing
system, when the demand for the file decreases exponentially. We use three
approaches to study the scenario: deterministic fluid modelling, time-dependent
Markov chain modelling and simulations. First we construct a deterministic fluid
model for sharing a single piece of the file and study the dynamics of the average
number of downloaders and seeds over time by solving the differential equations
of the model.

The deterministic fluid model is, however, unable to capture all the details
of the chunk sharing process such as possible unstability and extinction of the
system. For this reason we construct a complete non-homogenous Markov chain
model to obtain more information of the life cycle of chunk sharing process.
From the Markov chain model we are able to calculate the mean absorbtion
time and thus evaluate the life time of the chunk sharing system more precisely
than in papers [10], [11]. We also derive approximations of the life time in some
limiting scenarios and evaluate them by simulations using different parameter
combinations.

As both the fluid model and the Markov chain model concentrate on the shar-
ing single chunks independently of the other chunks, we study by simulations the

36 R. Susitaival and S. Aalto

P2P file sharing system with multiple chunks. The obtained analytical results for
the life time of a single chunk are compared to simulations of the corresponding
system with multiple chunks.

We have studied the population dynamics of the P2P file sharing system
already in paper [12]. In the previous paper we assumed that peer requests
for the chunk arrive with a constant rate, whereas in this paper we let the
peer arrival rate to change over time. Due to this fundamental difference in the
assumptions concerning the arrival process, also the deterministic fluid models,
Markov models and their solutions characterizing the population dynamics of
the system are completely different in the papers.

As a summary, our main contributions in this paper are:

– We construct a deterministic fluid model for chunk sharing and analyze the
number of the dowloaders and seeds over time.

– We develop a time-dependent Markov chain model for the number of seeds
and downloaders and calculate the mean life time of the chunk sharing
process. Also approximations are given.

– We verify the applicability of a single-chunk model to estimate the mean life
of file sharing by simulating the system with multiple chunks.

The paper is organized as follows: In Section 2 we introduce a model for
sharing a chunk with exponentially decreasing arrival rate. Section 3 studies the
population dynamics of sharing of a chunk by a deterministic fluid model. In
Section 4 we present an accurate result for the mean life time and in Section
5 we approximate it. Section 6 simulates the system with multiple chunks and
finally, section 7 makes a short conclusion.

2 A Model for Sharing a Single Chunk

In the sections from 2 to 5 the dynamics of the file sharing system is analyzed
by concentrating on a single chunk of the file. We study how the number of
downloaders and seeds evolves over time from the emergence of the chunk to
the disappearance of it. The disappearance of a single chunk means the death
of the whole file sharing process since the file is not entire anymore. The work is
motivated by the models of [8], [4], [11], but has some differences. In papers [4],
[11] the problem of sharing of several chunks concurrently is solved by assum-
ing that peers can forward the chunks with a constant rate. However, we find
the assumption unrealistic and the model probably hides some details of the
population dynamics. For this reason we consider the sharing of a single chunk
at a time. In addition, papers [8] and [4] assume that at least one seed stays
in the system keeping the chunks available. However, due to lack of centralized
management of BitTorrent, we believe that this assumption is not always true.

In many studies ([8], [4]) the inter-arrival time of new peers is assumed to
be exponentially distributed with a constant arrival rate. However, some mea-
surement studies, such as [6] [11], show that the peer arrival rate decreases over
time. So in this paper we study the population dynamics of the P2P system with

Modelling the Population Dynamics and the File Availability 37

time-dependent arrival rate λ(t) for a request of the chunk. Paper [11] proposes
a traffic model for P2P networks, where the arrival rate decreases exponentially
from the release of the file:

λ(t) = λ0e
−t
τ , (1)

where parameter τ describes the attenuation of the demand over time. The
average total number of requests arriving in the system, denoted by N , is then:

N =
∫ ∞

0
λ0e

−t/τdt = λ0τ. (2)

According to [11], the exponentially decreasing arrival rate fits well to the
corresponding measured peer request rate. For this reason we assume (1) to be
a reasonable model to capture the inherent flash crowd effect.

The downloader can download the chunk with rate μd. On the other hand,
the maximum upload rate of a peer for the chunk is assumed to be μs. After
the download, the status of the downloading peer changes from a downloader
to a seed. Note that in this context, a peer is referred to as the seed if it has
the chunk in question, but not necessarily all chunks of the file. Seeds stay in
the system for downloading other chunks of the file as well as unselfishly serving
other peers. All together, the time of staying in the system after downloading
the given chunk is assumed to be exponentially distributed with mean 1/γ.

Let x(t) be the number of downloaders and y(t) be the number of seeds at
time t. In the next sections we study the evolution of the pair (x, y) both by a
deterministic fluid model and by a Markov model.

3 Deterministic Fluid Model

As described in the previous section, we consider a system where a peer starts
to spread a single chunk to other peers that are willing to download it. In the
system, if the total download capacity of the downloaders, μdx(t), is smaller than
the total upload capacity of the seeds, μsy(t), the downloaders can not use all
service capacity provided by the peers. On the other hand, when μdx(t) > μsy(t)
the upload capacity of seeds limits the download process. Thus the total service
rate of the system is min{μdx(t), μsy(t)}. In Figure 1 we have illustrated the
model by a flow diagram. The evolution of the number of downloaders and
seeds, pair (x, y), can be described by a deterministic fluid model. The differential
equations of the model are:

dx(t)
dt

= λ0e
−t
τ −min{μdx(t), μsy(t)},

dy(t)
dt

= min{μdx(t), μsy(t)} − γy(t),
(3)

where y(0) = 1 and x(0) = 0 meaning that at the beginning, t = 0, there is one
seed and none downloaders. Let x̄ and ȳ be possible equilibrium values of x(t)
and y(t). The differential equations (3) have different solutions depending on the
parameters μs, μd and γ. Assuming that the mean download and upload times

38 R. Susitaival and S. Aalto

y γ yMin[μ x,μ y]s d(t) xλ

Fig. 1. A model for sharing a chunk

0 50 100 150 200
t

0

20

40

60

80

100

x
�
t
�
,
y
�
t
�

0 50 100 150 200
t

0

20

40

60

80

100

x
�
t
�
,
y
�
t
�

0 50 100 150 200
t

0

20

40

60

80

100

x
�
t
�
,

y
�
t
�

Fig. 2. The number of downloaders and seeds as a function of time, when λ0 = 10,
τ = 10, μ = 1 and γ = 5 (top), γ = 1 (middle) and γ = 1/5 (bottom). Black lines:
downloaders, gray lines: seeds.

Modelling the Population Dynamics and the File Availability 39

0 50 100 150 200
t

0

10

20

30

40

N
u
m
b
e
r
o
f
d
o
w
n
l
o
a
d
e
r
s

0 50 100 150 200
t

0

10

20

30

40

50

N
u
m
b
e
r
o
f
s
e
e
d
s

Fig. 3. The number of downloaders and seeds as a function of time, when λ0 = 10,
τ = 50, μ = 1 and γ = 1/5. Solid line: fluid model, Gray lines: simulation.

are same, μs = μd := μ, there are three characteristic solutions for the system,
which are depicted by a numerical example of Figure 2:

1. μ < γ. The existing seeds leave the system faster than new seeds arise. For
that reason the number of seeds goes to zero and the number of downloaders
increases until all N requests have arrived (see the top side of Figure 2).
The steady-state solution is thus x̄ ≈ N and ȳ = 0. Note that these N
downloaders do not receive the chunk at all.

2. μ = γ. After a very short initial period, the number of seeds stays constant,
while the number of downloaders increases beyond that (see the middle of
Figure 2). Finally, due to the attenuation of the arrival rate, the number of
downloaders returns back to the level of the number of seeds, after which
they both go to zero. The steady-state solution is thus x̄ = 0 and ȳ = 0.

3. μ > γ. Both number of the downloaders and seeds increase until all down-
loaders are served (see the bottom side of Figure 2). Also in this case x̄ = 0
and ȳ = 0.

40 R. Susitaival and S. Aalto

Next we compare the deterministic fluid model to simulations of the system.
The number of downloaders and seeds as a function of time is shown in the
top and bottom side of Figure 3, respectively. We have fixed λ0 to a moderately
small value in order to better demonstrate the dynamics of the system. The black
lines correspond to the solutions of equations (3) and gray lines to 10 different
simulations of the model described by Figure 1. Simulations have been done by
a simple event-based simulator. In the figures we can see that the number of
downloaders increases suddenly and the number of seeds increases also a little
bit later. As t ≈ 200, both x(t) and y(t) are decreased practically to zero. Also
all simulation processes have ended due to all seeds had left the system and the
chunk is not available anymore.

4 Time-Dependent Markov Chain Model for Chunk
Sharing

The deterministic fluid model of the previous subsection describes the average
behavior of the sharing of a chunk. However, from the simulation results we
saw two effects in the population dynamics that were not captured by the fluid
model. First, when the chunk became available the earliest seeds could not serve
all the downloaders. This capacity shortage was seen as a peak of downloaders
during the first 20 time units. Second, if the original seed can leave the system,
sooner or later the number of seeds goes to zero. Thus the end of the whole file
sharing process is irrevocable. In the simulations all processes were died before
t = 200. The limited life span of the file sharing process has an influence on
the performance of the total P2P system and has to be analyzed by some other
models than the deterministic fluid model. To this end, in the next subsections
we study the evolution of the process (x, y) in more detail by a non-homogeneous
Markov chain model with absorbtion.

In paper [12] we have derived an analytical model for the life time of the file
sharing assuming that the arrival rate of new requests is constant. The result
of the paper was that the mean life time of the system increases exponentially
as the expected number of the seeds in the system increases. In addition, when
the mean downloading time of the chunk was very short, the system can be
modelled as an M/M/∞-queue with arrival rate λ and departure rate γ. The
mean life time equals then to the average length of the busy period E[B] of
M/M/∞-queue:

E[B] =
1
λ

(eλ/γ − 1). (4)

Contrary to [12], in this paper we assume that peers arrive according to Pois-
son process with time-dependent rate λ(t). The mean departure time of a seed,
1/γ, the mean download time 1/μd and the mean upload time 1/μs remain con-
stant. Let π(x,y)(t) denote the probability of state (x, y) at time t. Next we form
the time-dependent Kolmogorov’s forward equations for transition rates between
the states:

Modelling the Population Dynamics and the File Availability 41

d
dtπ(x,y)(t) = λ(t)π(x−1,y)(t) + min{μdx + 1, μsy − 1}π(x+1,y−1)(t)

+(y + 1)γπ(x,y+1)(t)− (λ(t) + min{μdx, μsy}+ γy)π(x,y)(t),

for all x ≥ 1, y ≥ 1,

d
dtπ(x,0)(t) = λ(t)π(x−1,0)(t) + γπ(x,1)(t)− λ(t)π(x,0), for all x ≥ 1, y = 0,

d
dtπ(0,y)(t) = π(μd1,μsy−1)(t) + (y + 1)γπ(0,y+1)(t)

−(λ(t) + γy)π(0,y)(t), for all x = 0, y ≥ 1,

d
dtπ(0,0)(t) = γπ(0,1)(t)− λ(t)π(0,0)(t), when x = 0, y = 0,

(5)

with initial condition π(x,y)(0) = 1, when x = 0 and y = 1 and π(x,y)(0) = 0
otherwise. The explicit solution of the state probabilities is very complicated but
the problem can be solved numerically using a differential equation solver.

In this system all states (x, y) with y = 0 are absorbing. Let z(x,y) denote the
mean time spent in state (x, y) from the beginning (t = 0) to the absorbtion of
the system:

z(x,y) =
∫ ∞

0
π(x,y)(t)dt. (6)

The mean time to absorbtion, i.e. the life time of the system, is thus the sum
of the time spent in the non-absorbing states:

Tlife =
∑

(x,y):y>0

z(x,y). (7)

By the proposed model above we first study how the life time of the file sharing
process depends on the attenuation of the demand. As we increase parameter τ ,
the arrival rate of the requests decreases slower and we have more downloaders in
the system. That indicates also more seeds, and a longer life time of the system.
This can be seen in Figure 4, which depicts the almost linear growth of the
mean life time as a function of τ for different download times. For simplicity we
assume that the mean upload and download times are the same, denoted by 1/μ.
Also the shorter mean download time increases the life time of the system. The
results are obtained from the numerical solution of the mean absorbtion time
(7) when the state space of the Markov process is truncated to 20× 20 states.

By the model we can also study how the patience of the seeds to stay in the
system as servers after own download affects on the availability of the file. In
the top of Figure 5 the mean life time of the chunk sharing process is shown as a
function of 1/γ first for the relatively small values of 1/γ. In the figure λ0 = 10
and μd = μs = 1 and τ varies from 10 to ∞. We can see that the mean life
time of the system increases exponentially as a function of 1/γ. For example,
when τ = 1000, the mean life time of the system is close to the system with
constant arrival rate (case τ =∞). For smaller τ , such as τ = 10, the increase is
more moderate. The bottom of Figure 5 presents the results for same parameter

42 R. Susitaival and S. Aalto

25 50 75 100 125 150 175 200
Τ

0

100

200

300

400

500

M
e
a
n
t
i
m
e
t
o

a
b
s
o
r
b
t
i
o
n

Μ�1

Μ�0.5

Μ�0.1

Fig. 4. The mean life time of the process a function of τ . Parameters λ0 = 10, 1/γ = 5,
μs = μd = μ varies from 0.1 to 1.

0 0.5 1 1.5 2 2.5
1�Γ

5

10

15

20

25

30

M
e
a
n
t
i
m
e

t
o

a
b
s
o
r
b
t
i
o
n

Τ� �

Τ�1000

Τ�100

Τ�10

0 5 10 15 20 25
1�Γ

0

200

400

600

800

1000

1200

M
e
a
n
t
i
m
e
t
o

a
b
s
o
r
b
t
i
o
n

Τ�1000

Τ�100

Τ�10

Fig. 5. The mean life time of the chunk sharing process when 1/γ varies from 0 to
3 (top) and from 0 to 30 (bottom). Attenuation parameter τ varies from τ = 10 to
τ → ∞. Parameters λ0 = 10 and μs = μd = 1.

Modelling the Population Dynamics and the File Availability 43

0.5 1 1.5 2 2.5
Μ

100

200

300

400

500

600

700

800

M
e
a
n
t
i
m
e

t
o

a
b
s
o
r
b
t
i
o
n

Τ�1000

Τ�100

Τ�10

Fig. 6. The mean life time of the process as a function of μ. Parameters λ0 = 10,
1/γ = 5 and τ varies from 10 to 1000.

combination of λ0, μd, μs and τ , but the mean departure time 1/γ is longer.
From the results we can see that the ultimate increase of the mean life time as
a function of 1/γ is only linear when τ <∞.

Last we study the mean life time as a function of the download time of a
chunk. Figure 6 depicts the mean life time of the chunk sharing as a function μ.
When μ ≈ 0, the mean download time is very long and none of the downloaders
has got the file before the original seed has left the system. Thus the mean life
time of the system is 1/γ. For bigger μ the mean life remains almost constant
since the system is characterized more by attenuation parameter τ and departure
rate γ.

5 Approximation of the Life Time

In the previous section we presented an analytical result for the mean life time of
sharing a single chunk in the P2P file sharing system. Next we will approximate
the life time in a limiting case.

Also paper [11] approximates the mean time to extinction. The simple as-
sumption is that the system dies when λ(t) < γ. The mean life time of the
system Tlife can be then approximated by solving t from equation λ(t) = γ:

Tlife = τ log (
λ0

γ
). (8)

However, we will see that this is a very rough approximation for the life span of
the bitTorrent-like P2P system and much better bounds for the mean time to
absorption can be given.

We consider a case where the mean time that seeds spend in the system is
long as compared to the length of the burst of arrivals (meaning the time period

44 R. Susitaival and S. Aalto

0 100 200 300 400 500
1�Γ

0

500

1000

1500

2000

2500

3000

3500

M
e
a
n

l
i
f
e

t
i
m
e

Λ0�10, Τ�10

Λ0�20, Τ�10

Λ0�10, Τ�50

Λ0�20, Τ�50

Approx. of Guo

Fig. 7. The mean life time of the process as a function of 1/γ. First four lines (from
bottom): Approximation of paper [11]. Next four lines: our approximation (line) to-
gether with corresponding simulations (dots), when a) λ0 = 10 and τ = 10, b) λ0 = 20
and τ = 10, c) λ0 = 10 and τ = 50, d) and λ0 = 20 and τ = 50. Parameter μd = μc = 1.

from the beginning to the moment when λ(t) ≈ 0). If we assume that any seed
has not left the system before the end of arrival burst, the life time of the chunk
sharing system can be approximated by the two consecutive time periods, T1
and T2, where T1 is the length of the arrival burst and T2 is the length of the
period from the first to last departure of the seeds:

Tlife ≈ T1 + T2. (9)

First, the length of period T1 depends on the attenuation of the demand,
which is described by parameter τ . If we wait fraction p of total N arrivals, the
length of the burst period is:

T1 = τ log(
1

1− p
). (10)

After the arrival burst all downloaders gradually change their status from the
downloader to the seed. We have N seeds in the system and the mean departure
time of all N seeds is

T2 =
1

Nγ
+

1
(N − 1)γ

+
1

(N − 2)γ
... +

1
γ

=
�N	∑
i=0

1
iγ

. (11)

Next we assume that the mean departure time is long as compared to the
attenuation of the demand, 1/γ � τ . In this case also T2 � T1 and we can
approximate Tlife ≈ T2. In Figure 7 we compare the proposed approximation
to the simulation of the corresponding system with different combinations of

Modelling the Population Dynamics and the File Availability 45

λ0 and τ . If 1/γ is long, there are lot of seeds in the system and we use sim-
ulation instead of analytical model due to limited state space of the Markov
model (simulation results are averaged over 100 simulation replications). Also
the approximation of paper [11] is presented in Figure 7. For small values of 1/γ
neither of the approximations are good. However, as 1/γ > τ we can see that our
approximation is very accurate for many parameter combinations as compared
to the life time proposed by paper [11].

6 Sharing of Multiple Chunks

In the previous sections we considered sharing of a single chunk as an indepen-
dent process of other chunks and estimated the life time of the file sharing system
by the disappearance of a single chunk. However, in reality the dynamics of a
single chunk depends on the other chunks as well. So in this section we consider
population dynamics of a more complex system with multiple chunks.

In the system we have three types of peers, downloaders, leechers, and seeds.
Downloaders do not have any chunk yet and try to only download a first one.
Leechers have already downloaded a part of the chunks and can upload those
chunks to other peers in the system. While uploading the chunks, they try to find
the rest of the chunks. Finally, peers that have all chunks are called seeds. These
seeds stay for a while in the system uploading the chunks to the downloaders.

Let L be the size of the file under consideration in bytes. The file is divided into
blocks, named chunks, which are assumed to be downloaded one after another
separately. If we fix the size of chunk to l bytes, the total number of chunks is
naturally L/l, denoted by K. New peers requesting the given file are assumed
to arrive at the system with time-dependent rate λ(t). Also in this section we
assume that request rate decreases exponentially according to formula (1).

When new downloader i has arrived, it seeks random peer j among all available
peers including leechers and seeds in the system and compare the own set of
chunks and peer j’s set of chunks. If downloader i finds a chunk that is not in
its own collection, it starts to download it. We fix the mean download time of
a chunk to be proportional to the chunk size, that is, 1

Kμd
. Also the maximum

upload rate of a peer is proportional to the chunk size, Kμc. If there are many
downloaders per one leecher or seed, the capacity of the peer is divided among
downloaders. We assume that time required to find the peer for exchanging
chunks is negligible as compared to the download time.

After the peer has downloaded the first chunk, it seeks a next random peer
and a next random chunk. Also if selected peer j has not any new chunk that
the downloader i does not already have, downloader seeks a new peer. When a
peer has some, it can as a leecher upload the chunk to other peers, if required.
When the leecher has collected all K chunks, the status of the peer changes from
a leecher to a seed. We assume that the seeds stay in the system for a random
period. Let γ denote the departure rate of a seed.

However, we do not assume that there is always a seed keeping the file entire in
the system. If some of the chunks is missing, i.e. there are no seeds in the system

46 R. Susitaival and S. Aalto

0.5 1 1.5 2 2.5 3
1�Γ

5

10

15

20

25

30

M
e
a
n
l
i
f
e
t
i
m
e

Analytical

K�10, Τ�10

K�2, Τ�10

K�1, Τ�10

0 100 200 300 400 500
1�Γ

0

1000

2000

3000

4000

M
e
a
n
l
i
f
e
t
i
m
e

Approx., Τ�100

K�10, Τ�100

K�2, Τ�100

K�1, Τ�100

Approx., Τ�10

K�10, Τ�10

K�2, Τ�10

K�1, Τ�10

Fig. 8. The mean life time of the process as a function of 1/γ, when the file is divided
into multiple chunks. Number of chunks varies from K = 1 to K = 10 and τ varies
from τ = 10 to τ = 100. Parameters λ0 = 10, μd = μc = 1.

and the chunk is not included in any chunk collections held by the leechers, the file
is not complete anymore. In this case the sharing process of the given file dies.

First in the top of Figure 8 we have simulated the file sharing process for
small values of 1/γ, when the number of chunks varies from K = 1 to K = 10
and τ = 10. The number of the simulation replications for a given value of 1/γ is
500. From the figure we can see that our analytical model for sharing of a single
chunk corresponds well to the system with multiple chunks.

In the bottom of Figure 8 we have simulated the same file sharing process
for big values of 1/γ. Lower three lines correspond to τ = 10, and upper three
lines to τ = 100. Also the approximations for one chunk of the previous section
are presented. The result is that also in these cases the mean life time of the
system increases linearly as a function of 1/γ and fits well to approximation
of the chunk model presented in Section 5. For these parameter combinations,
the selected coarseness of the division of the file into chunks does not influence
substantially the mean life time of the file sharing process.

Modelling the Population Dynamics and the File Availability 47

As a result of this section we can say that the mean life time calculated
from the one chunk model correspond well to the life time of the more realistic
system with multiple chunks. This information helps in performance evaluation
and optimization of the file sharing systems with varying system parameters.

7 Conclusion

In this paper we have studied the population dynamics and the file availability
of the BitTorrent-like P2P system. Our approach was to calculate the mean life
time of a single chunk independently of the other chunks. We considered both
a deterministic fluid model and a non-homogenous Markov chain model. By the
latter model we were able to study how the different parameters, such as the
attenuation of the demand, the mean download time and the mean departure
time affected the mean life time of the sharing process. We provided also a simple
approximation for the life time, which gave better results than an earlier pro-
posal. The applicability of the one chunk model was verified by the simulations
of sharing of the file in multiple chunks. Our approach in this paper was rather
in modelling the existing systems than in optimization of the P2P file sharing
algorithms.

In future we will study more the analytical models and especially approxi-
mations of the life time also in other scenarios than we have done so far. For
example, the behavior of the system, when seeds can return back to the system,
is interesting. In addition, we will deepen the study of the scenario with multiple
chunks by both analytical model and more complex simulations.

References

1. T. Karagiannis, A. Broido, N. Brownlee, kc claffy, M. Faloutsos, Is P2P dying or
just hiding?, in Globecom, 2004.

2. http://www.cachelogic.com/p2p/p2ptraffic.php
3. B. Cohen, Incentives Build Robustness in BitTorrent, 2003, in Proc. of First Work-

shop on Economics of Peer-to-Peer Systems, June 2003, http://www.bittorrent.
com/bittorrentecon.pdf.

4. D. Qiu, R. Srikant, Modeling and Performance Analysis of BitTorrent-Like Peer-
to-Peer Networks, in Proc. of SIGCOMM 2004.

5. M. Izal, G. Uvroy-Keller, E.W. Biersack, P.A. Felber, A.Al Hamra, and L. Garcés-
Erice, Dissecting BitTorrent: Five Months in a Torrent’s Lifetime, in Proc. of PAM,
2004.

6. J.A. Pouwelsem P. Garbacki, D.H.J. Epema, H.J. Sips, The BitTorrent P2P File-
sharing system: Measurements and analysis, in Proc. of IPTPS, 2005.

7. L. Massoulié and M. Vojnović, Coupon replication Systems, in Proc. of SIGMET-
RICS, 2005.

8. X. Yang, G. de Veciana, Service Capacity of Peer to Peer Networks, in Proc. of
INFOCOM 2004.

9. K.K. Ramachandran, B. Sikdar, An Analytic Framework for Modeling Peer to Peer
Networks, in Proc. of INFOCOM 2005.

48 R. Susitaival and S. Aalto

10. Y. Tian, D. Wu, K. Wing Ng, Modeling, Analysis and Improvement for BitTorrent-
Like File Sharing Networks, in Proc. of INFOCOM 2006.

11. L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. Zhang, Measurement, Analysis, and
Modeling of bitTorrent-like Systems, in Proc of Internet Measurement Conference
of USENIX Association, 2005.

12. R. Susitaival, S. Aalto, J. Virtamo, Analyzing the dynamics and resource usage of
P2P file sharing by a spatio-temporal model, in Proc. of P2P-HPCS’06 in conjuc-
tion with ICCS’06, pp. 420–427, 2006.

Combining Virtual and Physical Structures for
Self-organized Routing

Thomas Fuhrmann�

System Architecture Group, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
Tel.: +49 721 6086730; Fax: +49 721 6087664

fuhrmann@ira.uka.de

Abstract. Our recently proposed scalable source routing (SSR) pro-
tocol combines source routing in the physical network with Chord-like
routing in the virtual ring that is formed by the address space. Thereby,
SSR provides self-organized routing in large unstructured networks of
resource-limited devices. Its ability to quickly adapt to changes in the
network topology makes it suitable not only for sensor-actuator networks
but also for mobile ad-hoc networks. Moreover, SSR directly provides the
key-based routing semantics, thereby making it an efficient basis for the
scalable implementation of self-organizing, fully decentralized applica-
tions.

In this paper we review SSR’s self-organizing features and demon-
strate how the combination of virtual and physical structures leads to
emergence of stability and efficiency. In particular, we focus on SSR’s re-
sistance against node churn. Following the principle of combining virtual
and physical structures, we propose an extension that stabilizes SSR in
face of heavy node churn. Simulations demonstrate the effectiveness of
this extension.

1 Introduction

Many researchers consider routing to be a prototypical example for self-organizing
distributed systems. In practice, however, large-scale routing is often not as self-
organizing as one might think. For example, the Internet’s scalability relies on a
suitable assignment of addresses that allows address aggregation in the routers.
Self-organizing network systems such as mobile ad-hoc or sensor network routing
protocols, on the other hand, mostly limit the network size to a few hundred nodes
or limit the routing purpose to, e. g. , data aggregation.

We aim at a related but different scenario: large unstructured networks where
the nodes communicate using the key-based routing semantics of structured
routing overlays. Our guiding example is a community of digital homes where
inexperienced users deploy an organically growing number and variety of net-
worked devices. These devices comprise tiny processing and communication units
that interface with sensors or actuators or both. Depending of the respective ap-
plication these devices shall be able to communicate across the entire network.
� This work was supported by Deutsche Forschungsgemeinschaft under grant FU448-1.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 49–61, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

50 T. Fuhrmann

The following examples shall motivate why we believe that such a scenario
will become more and more important in the near future.

Example 1: With SSR, the association of a wall-mounted switch (=sensor)
with a light bulb or marquee motor (=actuator) is no longer fixed by phys-
ical cabling, but can be (re-)programmed according to the current users’
preferences. Since the system is self-organizing, users can arbitrarily add
and remove devices without breaking the system. This is more robust than
today’s centralized building automation systems.

Example 2: Blinds, marquees, etc. must be retracted when heavy rain or a storm
approach. Today, each house has its own sensors. With SSR, all the sensor
readings from the neighborhood can be combined to yield more reliability
for the entire community. This is achieved by exploiting the aggregation tree
implicitly formed by proximity aware key-based routing (see below).

Example 3: Sensors in the greenhouse at the other end of the garden need not
directly report to the associated display in the living room, kitchen, etc. Any
infrastructure (both wired and wireless) can relay the data. If required, the
data can be redirected to other locations on demand, e.g. to the person who
takes care of the greenhouse when the owners are on vacation.

In the sketched scenarios, typically, wireless links are mixed with wired links.
Individual sensors might use (different) radio communication technologies, but
there will also be e. g. power line cabling. Using these wires to bridge larger
distances reduces both, the energy required by the sensors and the electromag-
netic interference problems. Thereby, communication relations can efficiently be
stretched across the whole network. Unlike today’s building automation net-
works, the resulting network will lack any simple structure: it will neither be a
tree that allows an address structure that can be aggregated, nor will it be a sim-
ple 2-dimensional layout, as it is, for example, required to use greedy perimeter
geographical routing.

Furthermore, these examples also demonstrate that self-organization is essen-
tial for future networks: Users will add and remove devices without taking care of
the network structure. These devices may have only limited memory and compu-
tation resources. New devices need to be quickly integrated; and devices leaving
suddenly and ungracefully should not harm the entire network’s functionality.
Small, isolated networks consisting of only a few devices may grow together to
form a large network with thousands of devices covering a whole neighborhood
of digital homes. Scalable source routing (SSR) has been specifically designed
for such scenarios.

The SSR protocol has been described elsewhere in detail [6]; and we kindly
ask you, the reader, to revert to that publication for any questions regarding
the details of the SSR protocol. Here we primarily discuss SSR’s self-organizing
properties. By that we mean SSR’s ability to provide structured routing in large,
unstructured networks without central components and without the need for con-
figuration or human interaction. Unlike many state-of-the-art routing protocols
for large networks, SSR operates in arbitrary network topologies, i. e. SSR is

Combining Virtual and Physical Structures for Self-organized Routing 51

self-organizing not only with respect to its operation but also with respect to
the physical system setup.

Especially, in this paper, we describe how a simple set of rules creates a
globally consistent structure from limited local information. Furthermore, we
describe how these simple rules achieve robustness in face of node churn, i. e.
when nodes ungracefully drop out of the network. We hope to thereby promote
the general understanding for the mechanisms of self-organizing systems, and to
foster the application of similar principles in other problems in networking and
distributed systems.

This paper is structured as follows. Section 2 briefly describes SSR’s core rules.
Section 3 discusses SSR’s mode of operation in the light of self-organization.
Based on this insight, section 4 describes a novel extension to SSR that improves
SSR’s stability in face of node churn. Finally, section 5 concludes with an outlook
to future work.

2 Scalable Source Routing

Scalable source routing (SSR) is a self-organizing routing protocol that provides
key-based routing in large, unstructured networks where nodes have limited re-
sources. Its design was guided by the following assumptions that reflect the
constraints and conditions of the scenario described above:

1. Nodes can afford only little memory to hold routing state. The memory is
assigned statically, i. e. there is no way to acquire additional memory. (Our
implementation, for example, requires only 4kB state per node.)

2. The network has no simple topology, i. e. it is neither hierarchical nor nec-
essarily planar. (This is caused by mixing wireline and wireless links.)

3. Nodes have location independent addresses, e. g. assigned by the manufac-
turer.

4. Nodes may communicate with many different destinations when using the
key-based routing semantic.

SSR’s key engineering trick is the combination of a virtual structure, the
address space, with the actual physical structure (=topology) of the network.
Both structures are equipped with a metric. The virtual metric is defined as the
absolute value of the numerical address difference, taking the address wrap into
account. The physical metric is defined as the length of a source route (i.e. hop
count) that connects the respective nodes.

As a result, SSR combines the beneficial properties of other routing ap-
proaches:

Like typical on-demand protocols such as AODV [13] or DSR [10], SSR does
not need to maintain routing state for all the nodes in the network. This keeps
the required routing state small and does not burden an otherwise (nearly) idle
network with unproportionally high control traffic.

Like typical link state or distance vector protocols such as OSPF or RIP, once
consistency is achieved, SSR can route any message without the need to acquire

52 T. Fuhrmann

or build up routing state for a previously unknown destination. This keeps the
routing delay low and avoids buffering the messages.

Moreover, SSR does not need to flood the network with route request mes-
sages (contrary to e. g. AODV and DSR); and it does not need to assign special
node identifiers according to the nodes’ position in the network (contrary to e. g.
LANMAR [12], Safari [2], and Beacon Vector Routing [4]). Thereby SSR avoids
the use of additional look-up protocols which, again, reduces the control traffic
associated with such look-up mechanisms. Moreover, SSR does not make any as-
sumption about the network topology. Thus SSR can efficiently combine wireless
and wireline links. This is unlike e. g. Greedy Perimeter Stateless Routing [11]
where the network graph is assumed to be planar.

SSR shares some ideas with previous work by various authors: DPSR [9] com-
bines the Pastry overlay with DSR. Ekta [14] enhances DPSR with indirect
routing. But unlike SSR both protocols need to flood the network to discover
source routes. MADPastry [17] combines Pastry with AODV to achieve indi-
rect routing. Unlike SSR, MADPastry needs to maintain a key-to-node mapping
which causes significant control traffic when nodes are mobile. Several other au-
thors have proposed similar uses of overlay structures for the maintenance of
location directories [3,5,16].

One of SSR’s key advantages is that the protocol is so simple that it can be
compactly implemented on resource-limited embedded controllers. Its core rule
is based on the Chord [15] idea: Nodes have location independent addresses that
are viewed as virtual ring.

A message is forwarded so that its virtual distance to the destination
decreases monotonically.

Clearly, this is not always possible with a node’s direct physical neighbors alone.
Hence, a node maintains a cache with source routes which correspond to the
‘fingers’ in the Chord overlay. (See below which source routes are entered into
the cache.) >From that cache the node picks a so-called next intermediate node
to which the message is then forwarded using the respective source route.

When choosing the next intermediate node, physically close nodes are
preferred over virtually far nodes.

As a result, SSR builds up a source route in the message header that spans
from the message’s source to its destination including the intermediate nodes.
Note that, when appending a source route, loops are cut out of the source route
so that a minimal spanning tree remains.

Intermediate nodes enter the source routes that are conveyed in the
messages into their cache. This cache is operated in a least-recently-used
manner.

Those familiar with the Chord overlay routing protocol and its proximity route
selection extension [8] will recognize that the just described procedure allows
efficient key-based routing (KBR). KBR is a generalization of unicast routing,
i. e. SSR is capable of both, KBR and unicast routing. With KBR messages

Combining Virtual and Physical Structures for Self-organized Routing 53

are delivered to that node whose address is numerically closest to the message’s
destination. KBR can serve as foundation for many distributed applications, like
for example distributed hash tables (DHT).

Nevertheless, as known from Chord, correct unicast routing and consistent
key-based routing is only guaranteed if each node stores correct fingers (here:
source routes) to its virtual neighbors, i. e. its successor and predecessor in the
address space ring.

Before we describe why SSR is in fact able to self-organizingly obtain and
maintain these source routes, we briefly discuss figure 1 which illustrates SSR’s
mode of operation. In practice, in such a small network all nodes would quickly
acquire the full topological knowledge of the entire network. For our example
here, we assume that nodes have only very limited information, i. e. each node
knows only its direct physical and virtual neighbors.

1717

3232

11
1313

1919

8888

6969 2626

7575

3939

9191

4242

5555

8383

2929

1

17
32 39

42

Fig. 1. Illustration of Scalable Source Routing

Assume further that node 1 wants to send a message to node 42. The message
is first sent from node 1 to node 17, because among the physical neighbors of
node 1 node 17 is virtually closest to the destination. (Note that 42 − 17 = 25
is smaller than 42 − 13 = 29 and 88 − 42 = 46.) For the same reason, node 17
forwards the message to node 32.

So far, the routing process has only involved direct physical neighbors. At
node 32, none of the physical neighbors is virtually closer to the destination
than node 32, the current intermediate node. Thus, node 32 must append a
non-trivial source route. According to our assumption, node 32 caches a source
route to its virtual neighbor, node 39, so that the message can be accordingly
forwarded to node 39. Node 39, finally, can append a source route to node 42.

As can be seen from figure 1 the result of this routing process is a spanning
tree that connects the intermediate nodes 1, 17, 32, 39, and 42. (Note that for

54 T. Fuhrmann

simplicity of terminology, we include the source and destination node in the set
of intermediate nodes.) This tree is conveyed in the message header, so that the
intermediate nodes, especially the destination node, can enter the source routes
to the previous intermediate nodes into their caches. Thereby, the nodes acquire
more knowledge about the network.

In our example, node 42 has acquired a source route to node 32. When node
42 sends a reply via node 32 to node 1, node 32 will acquire a source route
to node 42. Thus subsequent messages from node 1 to node 42 will not have
be routed via node 39 any more. The nodes in the network are ‘learning’ the
relevant source routes.

Note that in order to reduce the overhead in message headers, the source
route tree can be pruned, so that it contains only the most recent intermediate
nodes. A detailed analysis shows that these are the most relevant nodes of this
self-organized cache improvement process.

3 SSR’s Self-organizing Properties

The discussion of the example from figure 1 has already shown that once the
nodes have source routes to their direct virtual neighbors, SSR’s caching rule
has the effect that the nodes also accumulate source routes to (some of) their
indirect virtual neighbors. In presence of payload traffic, these source routes
are frequently used and therefore remain in the caches. Nevertheless all state is
soft state and can thus adapt to changes. (See below for a discussion of cache
maintenance in presence of node churn.) Moreover, unlike e. g. Chord, SSR does
not employ an explicit stabilization method, but self-organizingly builds the
respectively required knowledge. As a consequence, SSR does not necessarily
produce control messages in an idle network. This is an important feature in our
target scenario.

As mentioned above, SSR only works consistently if all nodes have source
routes to their respective direct virtual neighbors. In the remainder of this sec-
tion, we discuss why this is in fact likely to be the case in practice. To this end,
we have to review three emergent properties of SSR.

1. First, we note that due to SSR’s preference for physically close nodes, each
of a node’s direct physical neighbors will be chosen as a first intermediate node
for a particular address space interval, namely the interval covering all positions
in the address space for which the respective node is virtually closest. Fig. 2
illustrates the choice for node 1 in our example of fig. 1: Node 1 sends traffic
for the interval [7, 14] to node 13, traffic for the interval [15, 52] to node 17, and
traffic for the interval [53, 94] to node 88. Traffic for the interval [95, 6] stays at
node 1. (We assume nodes to have addresses in [0, 99].)

Correspondingly, node 32 sends traffic for the interval [51, 92] to node 69, and
traffic for the interval [93, 24] to node 17. Thus, nodes specialize for the addresses
around their own address and attract the respective traffic from their physical
vicinity.

This is demonstrated by the simulation results in figure 3. The plot shows
nodes (black disks) in a unit disk random graph that all try to route messages

Combining Virtual and Physical Structures for Self-organized Routing 55

17

1

13

88

8 7

14 15

95 94

52 53

Fig. 2. Illustration of address range specialization

to the same destination. For the plot, this destination was randomly picked. The
node density in the graph is chosen to be near the critical density to obtain a
connected graph (approx. 10 nodes per radio range disk). The arrows indicate
to which of their direct physical neighbors the nodes forward the messages.

Obviously, clusters emerge in the graph, where each cluster forwards the mes-
sage to one node in the cluster (= cluster head), namely the node that has spe-
cialized in the respective destination address. Note that unlike many MANET
protocols, SSR does not explicitly determine the clusters and the cluster head.
The clusters rather are an emergent property of SSR that is caused by the basic
routing rule. Consequently, the cluster formation is robust against node churn.
Note further that the clustering will be different for different destination ad-
dresses.

Clearly, if SSR had only this first emergent property described so far, the
system would be inconsistent in the sense that messages destined to the same
address but originating in different clusters would not end up at the same node.
Two further emergent properties resolve this inconsistency. By virtue of theses
properties SSR can connect (some of) the nodes within the clusters; and it can
connect nodes in different clusters via the cluster heads.

2. Upon bootstrapping, a node only knows its direct physical neighbors, and
thus has to choose its virtual neighbors from this limited set of nodes. With
high probability this leads to inconsistent assumptions among the nodes in the
clusters. In the example of figure 1 both, node 17 and node 13, will assume node
1 to be their predecessor. If node 1 is aware of this inconsistency, it can easily
resolve it. Thus, SSR requires the nodes to express their assumptions:

When routing to a next intermediate node that is assumed to be a virtual
neighbor of the previous intermediate node, indicate that assumption in
the message header.

In the example, upon reception of such a message from node 17, node 1 can
inform node 17 of the existence of node 13 by sending a message containing a
source route that connects node 1 and node 13. In general, the cluster heads
will serve as catalysts for their physical neighbors to find source routes to bet-
ter virtual neighbors within the cluster. However, this process will only rarely

56 T. Fuhrmann

Fig. 3. Example for SSR’s self-organized clusters

provide nodes with source routes to their direct virtual neighbors, because these
are likely to lie in other clusters.

The observation of a third emergent property explains why this is only an
apparent problem:

3. The clusters are slightly different for slightly different destination addresses.
Thus, information about the virtual neighbors can be conveyed between the
different clusters. In the example of figure 1 node 1 mediates the information
that nodes 13 and 17 are virtual neighbors. Before that mediation, messages
from node 29 or 69 to node 17 would have ended at node 13, whereas the same
message originating at nodes 1 or 32 would have been correctly routed to node
17. In other words, nodes 29 and 69 belong to another cluster than 1 and 32
with respect to destination node 17. After that mediation, all the messages will
be correctly routed to node 17, i. e. the clusters (for destination node 17) have
become connected by the source route connecting nodes 13 and 17. Furthermore,
node 17 can now mediate a source routing connecting the direct virutal neighbors
29 and 32.

Simulations show that even large networks converge quite quickly [6]. Even
though a detailed analysis [1] shows that this bootstrapping mechanism cannot
always guarantee global consistency, extensive simulations including node mo-
bility and churn [7] indicate that an such inconsistency is unlikely to appear in
practice. In fact, any inconsistency in the network is much more likely to be
caused by nodes moving or leaving the network and thereby breaking the source

Combining Virtual and Physical Structures for Self-organized Routing 57

routes that connect the virtual neighbors. We will discuss this problem in the
following section.

4 Stability in Face of Churn

To cope with node and link churn, overlay peer-to-peer protocols such as Chord
maintain finger tables that contain not only the direct virtual neighbors, but also
several indirect virtual neighbors. But with SSR the source routes to the virtual
neighbors have a high probability to overlap. As explained above, in the example
of figure 1, node 1 mediates the route 13-1-17 from which node 17 then mediates
29-13-1-17-32. Node 1 is thus crucial for the virtual neighborhood of nodes 13, 17,
29, and 32. In general, with SSR often a single node suffices to break the source
routes to all direct and several indirect virtual neighbors of a node.

Luckily, a simple trick resolves that problem: Nodes cache not only the source
routes to their virtual neighbors, but also store some of those virtual neighbors’
physical neighbors. When a route is found to be broken and cannot be salvaged,
it is back-propagated to the intermediate node that appended the broken path.
There, the outdated source route is deleted from the cache and the message
is then routed to one of the physical neighbors of the now unreachable virtual
neighbor. Since with high probability that new destination induces an entirely
different cluster pattern, the message is likely to follow a completely independent
path. Once that new destination has been reached, the message can be trivially
forwarded to the original destination because it is by definition a physical neigh-
bor. In order to do so, the original destination has always to be kept in the
message header.

We explain this again with the example of figure 1: Assume the link between
26 and 91 is broken, e. g. because node 91 has moved out of node 29’s radio range.
When the message in the example above cannot be forwarded to node 91, it is
back-propagated to node 39, the previous intermediate node. Along the way, the
nodes delete the respective link from their caches. If any of the nodes on the path
back to node 39 can salvage the source route, i. e. if it knows a source route to a
node in the message’s source route that lies beyond the broken link, the message’s
source route is accordingly modified and the message is forwarded along the new
source route. In order to update the caches SSR always back-propagates at least a
respective control message indicating the broken link together with an alternative
route. This is especially important for node 39 whose cache was the cause that the
message contained an outdated link. This back-propagation mechanism ensures
that the caches are quickly updated when outdated information is used for the
routing process.

If the message has been back-propagated to node 39 without having been
salvaged, node 39 substitutes the destination 42 with one of node 42’s physical
neighbors, here with node 91. According to SSR’s routing rules, the message is
now routed along the intermediate nodes -39-75-83-91. At node 91, the message
can then be forwarded to the original destination, node 42.

As a result, SSR achieves a high delivery ratio even in face of heavy node
churn. This may however be at the expense of a message being in flight for a

58 T. Fuhrmann

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 5 10 15 20

R
ou

te
 s

tr
et

ch

Route stretch

 0 5 10 15 20
 1

 10

 100

N
od

e
ha

lf-
lif

e
tim

e
[m

in
]

Simulation time [min]

Node lifetime

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

A
ck

no
w

le
dg

ed
 [%

]

Acknowledged

 0 5 10 15 20
 1

 10

 100

N
od

e
ha

lf-
lif

e
tim

e
[m

in
]

Simulation time [min]

Node lifetime

Fig. 4. SSR’s performance in face of heavy node churn

potentially long time. Nevertheless, extensive simulations show that SSR is still
more efficient than state-of-the-art protocols such as AODV that has to flood the
network to discover routes. The comparison of SSR to MANET routing protocols
such as AODV is extensively discussed in [7]. Here, we focus on the effect of node
churn.

Combining Virtual and Physical Structures for Self-organized Routing 59

Figure 4 shows results for an 8000 node small-world network with 8.3 kBit/s
links. We have chosen this topology here, because it is more affected by node
churn than unit disk graph networks, which are typical for MANETS. Moreover,
we expect the networks in our target scenario to be exhibit more small-world
properties than typical MANETs. The low link rate reflects the capabilities of
typical low-cost, low-resource embedded devices.

In our simulation, each node every 12 seconds sends a message to a randomly
chosen node (equal distribution). This simulates frequent look-ups in e. g. a DHT
built on top of SSR. Upon reception of such a message, the receiving node ac-
knowledges the message by sending back a response to the message’s original
source. Throughout the simulation nodes are killed according to a Poisson pro-
cess with a half-life time that oscillates between 60 and 6000 seconds (plotted
line). Whenever a node is killed, a new node joins the network (at a random
position), thereby keeping the entire number of nodes constant. Note that the
oscillating node life time allows us to study the hysteresis in the routing system,
an effect that is typical for many self-organizing dynamic systems.

Figure 4 shows the acknowledgment rate and the route stretch (i.e. the ratio to
the shortest path determined using the Dijkstra algorithm and global knowledge
of the network) for the first two oscillation periods of a typical simulation run.
As expected from [6], during bootstrapping, the route stretch peaks at about
2.4 and slowly declines afterwards. The stretch is slightly smaller during heavy
node churn periods (i. e. periods with small half-life time) because then longer
source routes have a significant probability to break and thus do not contribute
to the stretch calculation.

More importantly, the simulation shows that with this extension SSR is ca-
pable of maintaining almost 100% correct delivery as long as the nodes’ half-life
time is above about 10 min. Even if the life time falls below 1 min, SSR is able
to correctly acknowledge almost 50% of the messages.

Note that for determining these values we have to take the hysteresis into
account. To this end, we compare the rate at a given life-time value when the
life time is reducing, with that value when it is increasing. Thereby, we eliminate
potential short-term effects and get a good approximation for the long-term
behavior for the respective life-time value.

5 Conclusion

In this paper, we have reviewed our recently proposed scalable source rout-
ing (SSR) protocol. SSR combines source routing in the physical network with
Chord-like routing in the virtual ring that is formed by the address space. In par-
ticular, we have explained how SSR’s combination of the virtual ring structure
with the physical network topology creates a self-organizing routing protocol
that is able to efficiently operate in large scale networks. We have pointed out
that SSR is especially suited for organically growing networks of small embedded
devices that have limited memory and computation resources.

60 T. Fuhrmann

Based on our discussion of SSR’s self-organizing features we have proposed an
extension to SSR, that stabilizes SSR under heavy node churn. This extension
was motivated by the insight, that a single churn event can affect the source
routes to several of a node’s virtual neighbors, but that it is unlikely to affect the
source routes to the virtual neighbors’ physical neighbors. In order to confirm the
effectiveness of that extension, we have briefly discussed an 8000 node simulation
of SSR.

Currently, we are applying SSR’s basic principle, namely the combination of
virtual and physical structures to other problems in the design of self-organizing
systems. These problems include various aspects of distributed systems such as
distributed scheduling and replica management. We hope to be able to report
on first results soon.

References

1. Curt Cramer and Thomas Fuhrmann. Self-Stabilizing Ring Networks on Connected
Graphs. Technical Report 2005-05, University of Karlsruhe (TH), Fakultaet fuer
Informatik, March 2005.

2. Shu Du, Ahamed Khan, Santashil PalChaudhuri, Ansley Post, Amit Kumar Saha,
Peter Druschel, David B. Johnson, and Rudolf Riedi. Self-Organizing Hierarchical
Routing for Scalable Ad Hoc Networking. Technical Report TR04-433, Department
of Computer Science, Rice University, Houston, TX, USA, 2004.

3. Jakob Eriksson, Michalis Faloutsos, and Srikanth Krishnamurty. PeerNet: Pushing
Peer-to-Peer Down the Stack. In Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), Claremont Hotel, Berkeley, CA, USA, February
2001. Springer Verlag.

4. Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee, David Culler,
Scott Shenker, and Ion Stoica. Beacon Vector Routing: Scalable Point-to-Point
Routing in Wireless Sensornets. In Proceedings of 2nd Symposium on Networked
Systems Design and Implementation, Boston, MA, U.S., May 2005.

5. Bryan Ford. Unmanaged Internet Protocol. ACM SIGCOMM Computer Commu-
nications Review, 34(1):93–98, January 2004.

6. Thomas Fuhrmann. Scalable routing for networked sensors and actuators. In
Proceedings of the Second Annual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks, September 2005.

7. Thomas Fuhrmann, Kendy Kutzner, Pengfei Di, and Curt Cramer. Scalable Rout-
ing for Hybrid MANETs. submitted.

8. K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica.
The Impact of DHT Routing Geometry on Resilience and Proximity. In Proceedings
of the SIGCOMM 2003 conference, pages 381–394. ACM Press, 2003.

9. Y. Charlie Hu, Saumitra M. Das, and Himabindu Pucha. Exploiting the synergy be-
tween peer-to-peer and mobile ad hoc networks. In Proceedings of HotOS-IX: Ninth
Workshop on Hot Topics in Operating Systems, Lihue, Kauai, Hawaii, May 2003.

10. David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc
Wireless Networks. Mobile Computing, 353:153–181, February 1996.

11. Brad Karp and H. T. Kung. GPSR: Greedy Perimeter Stateless Routing for Wireless
Networks. In Sixth Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking (Mobicom 2000), pages 243–254, Boston, MA, August 2000.

Combining Virtual and Physical Structures for Self-organized Routing 61

12. Guangyu Pei, Mario Gerla, and Xiaoyan Hong. Lanmar: Landmark routing for
large scale wireless ad hoc networks with group mobility. In Proceedings of
IEEE/ACM MobiHOC 2000, pages 11–18, Boston, MA, U.S., August 2000.

13. Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand Distance Vector
Routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications, pages 90–100, New Orleans, LA, USA, February 1999.

14. Himabindu Pucha, Sumitra M. Das, and Y. Charlie Hu. Ekta: An Efficient DHT
Substrate for Distributed Applications in Mobile Ad Hoc Networks. In Proceed-
ings of the 6th IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA 2004), English Lake District, UK, December 2004.

15. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In
Proceedings of the SIGCOMM 2001 conference, pages 149–160. ACM Press, 2001.

16. Aline Carneiro Viana, Marcelo Dias de Amorim, and Serge Fdida. An Underlay
Strategy for Indirect Routing. Wireless Networks, 10:747–758, 2004.

17. Thomas Zahn and Jochen Schiller. MADPastry: A DHT Substrate for Practica-
bly Sized MANETs. In 5th Workshop on Applications and Services in Wireless
Networks (ASWN 2005), Paris, France, June 2005.

Optimizing Locality for Self-organizing
Context-Based Systems�

Mirko Knoll and Torben Weis

Context-based Systems Group, Universität Stuttgart
{knoll, weis}@ipvs.uni-stuttgart.de

Abstract. Running context-based systems with a fixed infrastructure
involves substantial investments. There have been efforts to replace those
systems with self-organizing ones. Therefore, recent systems use peer-to-
peer (P2P) technology as a basis. Context-information is bound to a
specific location and thus should be stored on a nearby node. Common
P2P algorithms use one-dimensional ID spaces. However, locations have
at least two coordinates, namely x and y. We use space-filling curves to
map the two-dimensional area onto the one-dimensional ID space. In this
paper we discuss the suitability of different space-filling curves for the
average case and for stochastic scenarios.

1 Introduction

Context-based systems have become more and more popular recently as they
can be used for many different scenarios. Running such a system includes dealing
with huge amounts of data and requires an appropriate infrastructure for hosting
this data. Providing this infrastructure is coupled with investments in hardware,
bandwidth, and manpower for management tasks. Therefore, newly more and
more projects try to reduce their costs by realizing context-based systems using
peer-to-peer (P2P) technology. These systems are self-organizing, hence liberat-
ing the operators from network managing. They are decentralized, which makes
them independent of any given infrastructure. Furthermore, as each participant
contributes own resources (CPU power, disk space, bandwidth, ...) the costs are
spread over all peers, making the system fair. However, there are still some chal-
lenges when using peer-to-peer systems as an overlay network for context-based
applications. Context is related to a specific object (person, building, ...), which
is located somewhere on this planet. Therefore, the appropriate coordinates are
3-dimensional (latitude, longitude and altitude). Modern P2P systems however
use a ring structure to organize themselves, a node solely knows its neighbors
in the circular ID space (1-dimensional). To counter this problem, we need a di-
mension reduction to map the multi-dimensional data onto the ring. In addition,
we want to optimize our P2P system towards locality. Due to latency and se-
curity issues it would be best to store information concerning a certain location
� The presented work has been funded by DFG Excellence Center 627 “Nexus” and

DFG SPP “Organic Computing”.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 62–73, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Optimizing Locality for Self-organizing Context-Based Systems 63

on a computer close to it. The peers in our system therefore have to identify
their own location and the location to which the context-information is relevant.
Thus, we can ensure that the opening hours of the Berlin Pergamon museum are
stored on a peer in Berlin and not in Tokyo. To solve these two major problems
we present an algorithm, which bases on Pastry [1]. It optimizes the data dis-
tribution for a close relation between the location the information is about and
the location the data is actually stored through the use of space-filling curves
(SFC). With our approach we want to extend the functionality of the Nexus
project [2][3][4] through the use of P2P technology. The Nexus system provides
for answering three types of queries: range queries, nearest neighbor queries and
position queries. In this paper we present a method of answering nearest neighbor
queries in a geographically optimized P2P network.

2 World Partitioning

Our algorithm bases on Pastry, which is organized in a ring structure. In plain
Pastry each peer is assigned a unique ID through the use of a hash-function over
the IP address. To answer a query the according key ID is calculated and sent
to the node with the ID “closest” to it (prefix routing). However, the method
for assigning IDs to nodes as used in Pastry is sub-optimal for the use in our
scenario. It uses a hash function to calculate the node ID, which results in the
fact that nodes with adjacent node IDs may be diverse in geography. This is
highly undesirable, as queries might have to travel long distances. In contrast,
our algorithm optimizes the location where data is stored.

To achieve our goal of assigning an ID corresponding to the location of the
node, we divide the world into equally-sized zones [5]. For the remainder of the
paper we regard the world as a 2-dimensional quadratic map due to simplicity
(see Figure 1). Still, it poses no problem to enhance our model to support a
third dimension (additional bits are concatenated with the IDs). Each zone then
represents the smallest area a single node can be responsible for. The more zones,
the more nodes can be supported. We believe using 56 bit for encoding the node
ID will be sufficient for most applications as a single zone is then below 0, 007m2.
Upon booting a node determines its geographical position and calculates its node
ID to participate in the P2P ring.

More precisely, starting from a unit square representing the whole world, the
square is subdivided into four mini-squares in each further step. We call the
squares that emerge after the first division order-1 squares, the squares after
the second division order-2 squares and so on. After the partitioning is finished,
each zone includes at most one node. In reference to the unit square, each zone
has a determined set of coordinates. These will then be used as input for an ID
assignment algorithm to calculate the ID the node will use to enter the overlay
network. Due to the fact, that there is at most one node per zone, no node
ID will occur twice. For the time, the positioning mechanisms are not accurate
enough to match the resolution of the grid, the node ID is expanded with an
additional set of random digits. In case a node should anyhow choose the same

64 M. Knoll and T. Weis

Fig. 1. 2D World Model (Map projection after Peirce [6])

ID as another one, this can be easily detected and corrected by choosing a new
one.

The ultimate goal is to have a minimum difference between actual geographic
distance and the distance in ID space. More precisely, if the geographic distance
between two random nodes is small, we expect their nodes IDs to be numerically
close, too. Thereby, we limit the distance messages have to travel. However, the
problem is, that finding the optimal ID assignment scheme is impossible.

This opens up several methods on how to calculate the node ID. Space-filling
curves have proven to be well suited for dimension-reduction, which is why we
use space-filling curves for assigning the node IDs. Yet, [7] proved that it is
impossible to create a SFC, such that all points close in the multi-dimensional
space are close on the curve, too. Therefore, we compare different curves by
identifying their characteristics and conclude their usefulness in our scenario. In
contrast to other works [8][9] we investigate locality in small-world population
scenarios, too.

3 Space-Filling Curves

The simplest way to map an index curve onto an area is to superimpose the
curve in an s-shaped way. This approach is not very promising, as the expected
error is elevated. This is due to the fact that geographically close nodes may
have a large discrepancy in their node IDs. For example, the first element of the
first two rows are geographically close, but their node IDs differ by two times
the edge length of the area as can be seen in Figure 2.

The popular space-filling curves are based on a different approach. G. Can-
tor proved that it is possible to bijectively map the interval I = [0, 1] onto
the space Ω = [0, 1]d ; d ∈ N [10]. G. Peano then defined, that a space-filling
curve f : I �−→ Ω ⊂ Rd is surjective and Ω is positive in Rd. This defini-
tion led to the development of several curves, which can be distinguished by
their level of locality. Locality indicates the relationship of the distance of two

Optimizing Locality for Self-organizing Context-Based Systems 65

Fig. 2. Trivial S-shaped Curve

points p1, p2 ∈ I on the SFC and its image f(p1), f(p2) ∈ Ω in the multi-
dimensional space. We search a curve with good locality properties or more
precisely: p1 ≈ p2 ⇔ f(p1) ≈ f(p2). For the remainder of the paper, we state,
that we solely regard approximations of the curves, as we use them for assigning
IDs to nodes only. It is difficult to estimate the locality exclusively by analyzing
the geometric representation of the curve. However, it is obvious that long edges
worsen locality, as there is larger difference in geography and only a minimal
difference in ID space, which for example is the problem of the trivial S-shaped
curve. In the following we compare a selection of space-filling curves, that promise
good locality. Several sources present further SFCs [10][11], however, most curves
show a certain level of similarity or are not suited for our purpose.

3.1 Peano

Peano presented the first curve fulfilling the definition above. The partitioning
of that curve differs from all other well-known SFC. On each partitioning step,
each zone is split into three slices in each dimension. Therefore, the unit square
is divided into nine zones in the first step. The curve then follows the initial
mapping as in Figure 3 (left image). The distances between two adjacent nodes
on the curve is homogeneous, thus the curve is often applied in other research
areas, such as cache-optimizations [12].

3.2 Lebesgue

One of the simplest space-filling curves is described by the standard Lebesgue
Curve [10] (also known as Z-order curve). It allows for an easy conversion from

Fig. 3. Peano Curve (Order 1-3)

66 M. Knoll and T. Weis

the indices in the 2-dimensional matrix to the 1-dimensional index along the
curve, which makes it extremely attractive for the use in our scenario. The index
of a point p is calculated as follows:
x = (x0x1...xn), y = (y0y1...yn) → Pindex = y0x0y1x1...ynxn The resulting
curve is self-avoiding, but contains some long edges, which is not optimal for our
purpose.

(a) (b) (c) (d)

Fig. 4. Lebesgue Curve (Order 1-4)

3.3 Hilbert

Shortly after Peano presented his SFC, David Hilbert proposed another impor-
tant curve. In the area of mesh-indexing the authors of [8] could prove that in
the worst case the Hilbert curve provided best geometric locality properties. Its
geometric construction starts with the basic “u”-form (left image of Figure 5).
The order-2 curve is then generated by shrinking its size such that four copies
can be placed on the grid. While the position of the upper two curves matches
their final orientation, the lower curves have to be rotated according to their
position on the unit square (see middle image of Figure 5). Lastly, the ends fac-
ing each other have to be connected, forming the continuous curve. For further
orders this procedure is applied recursively to all partial squares.

Fig. 5. Hilbert Curve (Order 1-3)

3.4 Fass II

Fass is an acronym for space-filling, self-avoiding, simple and self-similar curves.
Besides the Hilbert and Peano curve we analyze another interesting Fass

Optimizing Locality for Self-organizing Context-Based Systems 67

curve [11], basing on the following Lindenmayer [13][14] parameters: Angle =
90◦, Axiom = −L, Rules = {L → LFLF + RFR + FLFL − FRF − LFL −
FR + F + RF − LFL − FRFRFR+, R → −LFLFLF + RFR + FL − F −
LF + RFR + FLF + RFRF −LFL−FRFR}. Similar rules are used in Turtle
Graphics [15], where a “minus” indicates a turn by 90 degrees to the left (plus
to the right) and an “F” marks the next point or zone in our scenario. Starting
with the axiom (initial value), the next order curve is generated by replacing
the “L” and “R” according to the rules. The resulting curve resembles the digit
four, as can be seen in Figure 6.

Fig. 6. Fass II Curve (Order 1-3)

4 Evaluation

In this section we identify the suitability of the curves for the use in our scenario.
Therefore we conducted several tests, measuring the average error distribution,
analyzing the locality in dense and sparse populated worlds and testing the
behavior in small-world networks.

4.1 Mean Error Rate

The mean error rate (MER) reflects the average deviation of the geographic
coordinates and the assigned ids. For setup, we assume to have exactly one
node in each zone, being assigned an ID as the curve passes by. We then regard
each node with every other node and calculate the difference in geometric and
ID space. As the curves use different partitioning processes (Peano generates 9
squares whereas some others use 4) we cannot calculate the sum of all these
differences for comparison. Therefore, we devise the MER independent of the
zone count as we normalize the ID difference and the euclidean distance (Δgeo).
We then sum up all these values and normalize this result to devise the MER
for every curve as in (1).

MERcurve =
n∑

i=1

∑n
j=1,j ��=i

∣∣∣ |i−j|
n − |Δgeo(i,j)|√

2n

∣∣∣
n

(1)

Figure 7 illustrates the error distribution for the complete unit square. The
darker the zone, the higher its mean error.

68 M. Knoll and T. Weis

(a) Peano (b) Hilbert (c) Fass2

(d) Lebesgue (e) S-shaped

Fig. 7. Mean Error Distribution of Space-Filling Curves

The following table shows the different MERs per curve. It shows that the
more complex space-filling curves are more efficient than the S-shaped or Leb-
esgue curves in our scenario.

S-shaped Lebesgue Hilbert Peano Fass2
Error 0,33 0,33 0,26 0,26 0,27

4.2 Small-World Populations

In this test we evaluated the curves in a more realistic scenario. Whereas in the
latter test we calculated an average over all nodes, we now compare only a selec-
tion of nodes. This resembles the fact, that most likely not every zone will contain
a node. There will be a some more interesting locations (Hotspots) and therefore,
more nodes (Residents) will likely be around. To reflect this natural behavior
we used the Fermi-Dirac statistics [16] [17], assigning Hotspots and Residents to
zones in the unit square, such that a small-world-like [18] population is mirrored.
Small-world models can be used to emulate real-life population scenarios [19].
Nodes (equivalent for people) within a certain proximity of each other form a
cluster (e.g. a city). All clusters are randomly distributed and interconnected,
thus resembling differently sized population areas. For our simulation, we first
assigned one Resident randomly over the area. Further Residents will more likely

Optimizing Locality for Self-organizing Context-Based Systems 69

populate a zone close to a zone, which is already populated, since this zone is
more attractive. Afterwards, the Hotspots are placed in the near surroundings of
larger Resident gatherings, since it is more likely that there is information to be
stored than elsewhere. The curve in Figure 8(a) mirrors the level of attractivity.
The very near surrounding zones maintain a high level of attractivity, which
is dropping fast with an increasing distance. The unit square will thus contain
some metropolitan areas and few scattered nodes, resembling heavy populated
cities and less populated back-country. Thus populations as in Figure 8(b) are
generated.

(a) Fermi-Dirac gradient (b) Population Simulator

Fig. 8. Generating small-world-like populations

The error rate in this case is calculated as follows. Each Hotspot i determines
the node geographically closest NGeo(i) and the node closest in ID space NID(i).
Communication takes place with the node numerically closest to a Hotspot.
An error occurs if the geographically closest node is not the node with the
numerically closest ID. In this case, another node will wrongfully be contacted
to deliver information about the Hotspot. Though we are talking about an error
here, the system will nevertheless work. It is just the choice of nodes, which is
sub-optimal. Thus, the small-world mean error rate (SMER) results from the
euclidean difference between the optimal node NGeo and the wrongfully chosen
node NID:

SMERcurve =
{ n∑

i=1

Δgeo
(
NGeo(i), NID(i)

)∣∣∣ i ∈ Hotspots
}

(2)

Figure 9 shows the error rate of the curves with a population, which increases
according to the size of the unit square. It appears, that error level of the more
complex space-filling curves (Hilbert, Peano, Fass II) is far lower than that of the

70 M. Knoll and T. Weis

Fig. 9. Error per Hotspot

trivial curves. For this simulation we used a grid with up to 2048x2048 zones.
When partitioning the world for our peer-to-peer ring, the amount of zones will
even be much higher. Therefore, the trivial curves pose no possible solution.

Another interesting aspect is to evaluate the performance of the different
curves with varying population levels. Therefore, we kept the amount of Hotspots
and Residents constant, regardless the size of the unit square and thus creating
dense worlds at the beginning to sparse networks at the end of Figure 10. It
becomes obvious, that an efficient node-indexing cannot be achieved by using
“simple” curves like the S-shaped or even the Lebesgue curve. This becomes
clear when regarding worlds with a sparse population (see result with grid size

Fig. 10. Error per Hotspot with dense and sparse Populations

Optimizing Locality for Self-organizing Context-Based Systems 71

of 4096x4096). The less Residents there are, the higher the probability to wrong-
fully choose a geographically farther node over a closer one. The remaining curves
perform almost equally, though the Hilbert curve points out the smallest error
derivation. Furthermore, the complex curves point out, that their average deriva-
tion lies around 1 percent. This value is extremely low, meaning that in the
everyday service we would choose the optimal Resident in 99 out of 100 times.

5 Related Work

To our knowledge there is no other framework for hosting context-data, which
optimizes for locality of their content. However, there has been excessive research
in partial aspects of our project.

P2P Systems: Protocols in this section are optimized towards the main tasks
of P2P systems: insertion, lookup, and deletion of keys. CAN is a popular and
efficient representative of this section. Its storage mechanisms are similar to
Pastry’s, but its routing algorithm differs. CAN’s coordinate space is completely
logical and bears no relation to any physical coordinate system [20]. Hence it
is difficult to host context-information according to its location as peers are
responsible for a randomly chosen zone. Furthermore, the coordinate space is
partitioned dynamically, which requires many updates of neighborhood nodes in
the case of new nodes or node failure. Thus, its runtime of O(d·N1/d

4) is worse
than Pastry’s O(log(N)). However, CAN optimizes for routing, whereas we want
to optimize for locality of data.

Data Storage: This area deals with storage problems and how to distrib-
ute large amounts of data among all peers most adequately. One of the largest
projects in that area is the OceanStore [21][22] project. Its main research focuses
on a utility infrastructure for providing continuous access to persistent informa-
tion. OceanStore distinguishes between service providers and users subscribing
to one of these providers. The providers are comprised of untrusted servers,
which raises the necessity to replicate all data on several other servers in order
to prevent a loss. Therefore, OceanStore is less suited for hosting context-based
information.

Space-Filling Curves: In [23] the authors present a P2P information discov-
ery system supporting complex searches using keywords. Their system bases on
Chord for the overlay network topology and utilizes the Hilbert SFC for the
dimension reduction. However, their main focus lies on the mapping of data el-
ements, which are local in a multi-dimensional keyword space, to indices which
are local in the 1-dimensional index space. Two documents are considered local,
when their keywords are lexicographically close (e.g. computer and computa-
tion) or they share common keywords. This comes at a cost, as using space-filling
curves does not guarantee a uniform distribution of data elements in the index
space. Therefore, additional load-balancing algorithms have to run to reduce the
load of heavily used nodes. Wierum [9] uses a similar index-range metric for
comparing the quality of the different curves. However, he intends to use the
curves to allow for efficient sorting and searching. Therefore, he only takes the

72 M. Knoll and T. Weis

direct neighbors of a zone into account and limits his average error only with
regard to those. In our scenario, it is important to find the curve, which mini-
mizes the average error over all zones, as communication will most likely take
place between nodes, which are not adjacent.

6 Conclusion

In this paper we have presented a method allowing to host context-based infor-
mation on a self-organizing peer-to-peer system. In contrast to existing context-
based systems our algorithm optimizes the data distribution towards geometric
locality, keeping the distance information travels short. We showed that finding
an optimal curve for node-indexing is not a simple problem, as the S-shaped and
even the more complex Lebesgue curve perform poorly. The more complex SFC
present far better locality properties, especially the Hilbert curve. As its average
derivation error in small-world-like world partitions is around one percent, the
curve is perfectly suited for the use in our scenario. We are planning to extend
this research to support further query types, such as range queries.

References

1. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object loaction for routing
for large-scale peer-to-peer systems. In: Proceedings IFIP/ACM Middleware 2001.
(2001) Heidelberg, Germany.

2. Lehmann, O., Bauer, M., Becker, C., Nicklas, D.: From home to world - support-
ing context-aware applications through world models. In: PERCOM ’04: Proceed-
ings of the Second IEEE International Conference on Pervasive Computing and
Communications (PerCom’04), Washington, DC, USA, IEEE Computer Society
(2004) 297

3. Grossmann, M., Bauer, M., Hönle, N., Käppeler, U.P., Nicklas, D., Schwarz, T.:
Efficiently Managing Context Information for Large-scale Scenarios. In: Proceed-
ings of the 3rd IEEE Conference on Pervasive Computing and Communications
(PerCom2005), IEEE Computer Society (2005)

4. Dudkowski, D., Schwarz, T.: The neXus Homepage. http://www.nexus.uni-
stuttgart.de (2005)

5. Knoll, M., Weis, T.: A P2P-Framework for Context-based Information. In: 1st
International Workshop on Requirements and Solutions for Pervasive Software In-
frastructures (RSPSI) at Pervasive 2006, Dublin, Ireland (2006)

6. Furuti, C.A.: Map projections. http://www.progonos.com/furuti/MapProj/
CartIndex/cartIndex.html (2006)

7. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling
curves. IEEE Transactions of Image Processing 5(5) (1996)

8. Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-
indexings. In: Fundamentals of Computation Theory. (1997) 364–375

9. Wierum, J.M.: Logarithmic path-length in space-filling curves. In Wismath, S.,
ed.: Proceedings of the 14th Canadian Conference on Computational Geometry,
Lethbridge (2002) 22–26

10. Sagan, H.: Space-Filling Curves. Springer-Verlag, New York, NY, USA (1994)

Optimizing Locality for Self-organizing Context-Based Systems 73

11. Nielsen, B.: Lindenmayer systemer. http://www.246.dk/lsystems.html (2006) (in
Danish).

12. Pögl, M.: Entwicklung eines cache-optimalen 3D Finite-Elemente-Verfahrens für
große Probleme. PhD thesis, Technische Universität München, Munich, Germany
(2004)

13. Peitgen, H.O., Saupe, D., eds.: The Science of Fractal Images. Springer-Verlag,
New York, NY, USA (1988)

14. Alfonseca, M., Ortega, A.: Representation of fractal curves by means of l systems.
In: APL ’96: Proceedings of the conference on Designing the future, New York,
NY, USA, ACM Press (1996) 13–21

15. Abelson, H., diSessa, A.: Turtle Geometry: The Computer as a Medium for Ex-
ploring Mathematics. The MIT Press, Cambridge, MA, USA (1981)

16. Tipler, P.A., Mosca, G., Pelte, D.: Physik. 2 edn. Spektrum Akademischer Verlag
(2004) (in German).

17. Gutowski, M.W.: Smooth genetic algorithm. Journal of Physics A: Mathematical
and General 27(23) (1994)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6) (1998) 440–442

19. Watts, D.J.: Small Worlds. Princeton University Press, Princeton, NJ, USA (1999)
20. Ratnasamy, S.P.: A Scaleable Content-Adressable Network. PhD thesis, University

of California, Berkeley, CA, USA (2002)
21. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,

Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: OceanStore: An Architecture
for Global-scale Persistent Storage. In: Proceedings of ACM ASPLOS, ACM (2000)

22. Kubiatowicz, J.: The OceanStore Project. http://oceanstore.cs.berkeley.edu/
(2005)

23. Schmidt, C., Parashar, M.: Flexible information discovery in decentralized dis-
tributed systems. In: 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC-12 ’03), IEEE Computer Science (2003) 226

Randomized Self-stabilizing Algorithms for
Wireless Sensor Networks

Volker Turau and Christoph Weyer

Hamburg University of Technology, Institute of Telematics
Schwarzenbergstraße 95, 21073 Hamburg, Germany

turau@tuhh.de

Abstract. Wireless sensor networks (WSNs) pose challenges not pre-
sent in classical distributed systems: resource limitations, high failure
rates, and ad hoc deployment. The lossy nature of wireless commu-
nication can lead to situations, where nodes lose synchrony and pro-
grams reach arbitrary states. Traditional approaches to fault tolerance
like replication or global resets are not feasible. In this work, the concept
of self-stabilization is applied to WSNs. The majority of self-stabilizing
algorithms found in the literature is based on models not suitable for
WSNs: shared memory model, central daemon scheduler, unique proces-
sor identifiers, and atomicity. This paper proposes problem-independent
transformations for algorithms that stabilize under the central daemon
scheduler such that they meet the demands of a WSN. The transformed
algorithms use randomization and are probabilistically self-stabilizing.
This work allows to utilize many known self-stabilizing algorithms in
WSNs. The proposed transformations are evaluated using simulations
and a real WSN.

1 Introduction

Wireless sensor networks (WSNs) are networks of small, battery-powered, re-
source-constrained wireless devices equipped with sensors embedded in a physical
environment where they operate unattendedly for long periods of time. WSNs
pose challenges not present in classical distributed systems, foremost extreme
resource limitations, high failure rates, and ad hoc deployment. These bound-
ary conditions and the high number of nodes preclude dependence on manual
configuration and control. Inevitably unattended WSNs must self-organize in
response to node failures or addition of new nodes, and must adapt to changing
environmental conditions. The dynamic and lossy nature of wireless communi-
cation caused by the primitive, low-power radio transceivers found in WSNs can
lead to situations, where nodes lose synchrony and their programs reach arbi-
trary states [1]. Traditional approaches to fault tolerance like replication where
the effects of faults are shielded or a shutdown and globally reset of the complete
network are not feasible. In this work, the concept of self-stabilization pioneered
by Dijkstra [2] is applied to WSNs. A distributed system is self-stabilizing if
after transient faults, regardless of their cause, it returns to a legitimate state in

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 74–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Randomized Self-stabilizing Algorithms for WSNs 75

a finite number of steps regardless of the initial state, and the system remains
in a legitimate state until another fault occurs [3,4]. Self-stabilizing algorithms
tolerate arbitrary transient failures caused by corruptions of local state, or the
disruption of message passing channels, or system resets with unknown initial-
ization. They do not try to handle every individual failure separately, but try to
capture the commonality of all failure modes.

Self-stabilization provides a generalized non-masking approach to fault toler-
ance. This implies that the system experiences the effect of transient faults, in
contrast to the replication paradigm. As a consequence applications must be pre-
pared to handle or tolerate these situations. A disadvantage of self-stabilizing
algorithms is that a node does not know when the algorithm has stabilized.
Self-stabilization fits into the unattended operation style of WSNs, where no
outside intervention is necessary. Over the last 20 years many self-stabilizing
algorithms have been proposed, quite a few of them are of interest for WSNs:
graph coloring [5], articulation points [6], dominating sets [7], depth-first trees
[8], and spanning trees [9]. However, the majority of these algorithms is based on
models not suitable for the constraints of WSNs: shared memory model, central
daemon scheduler, unique processor identifiers, and atomicity. To utilize these
algorithms in WSNs, transformations from these strict models into the WSN
model are needed. The majority of transformations that have been proposed so
far appear to be problem-specific (for an exception see [10]). There is a strong
need to devise a general method for systematically transforming algorithms into
the realm of WSNs while preserving the stabilization character.

The main contribution of the paper consists of problem-independent stabiliza-
tion preserving transformations for algorithms that stabilize under the central
daemon scheduler in a bounded number of moves in anonymous networks. This is
a generalization of problem-specific solutions for graph algorithms such as vertex
coloring [5] and minimal independent sets [11]. The key concept is to introduce
randomization, as a consequence the transformed algorithms are only probabilis-
tically self-stabilizing. This work enables us to execute self-stabilizing algorithms
designed for the central daemon scheduler in WSNs. More importantly, it also
helps to develop new and more practical self-stabilizing algorithms for WSNs.

The paper is organized as follows: Section 2 introduces the main concepts of
self-stabilization and Section 3 discusses the problems of self-stabilizing WSNs.
After that the example used in the experiments covered in Section 6 is presented.
Section 5 contains the main contribution, the transformations. In Section 6 pre-
liminary results attained by simulations and through an implementation of the
transformation using a real sensor network are presented. The paper ends with
related work and a conclusion.

2 Self-stabilization

The objective of self-stabilization is to recover from transient faults in a bounded
time without any external intervention. The absence of faults is defined by a
predicate P over the global state of the system, P is defined locally, i. e., based

76 V. Turau and C. Weyer

on the local state of each node and the states of their neighboring nodes. More
formally, let N = {N1, N2, . . . , Nn} be a set of sensor nodes and E ⊆ N × N
be a set of bidirectional communication links in a sensor network. The topology
of the system is represented as the undirected graph G = (N, E). A set of local
variables defines the local state of a node. By si, we denote the local state of
node Ni ∈ N . A tuple of local states (s1, s2, . . . , sn) forms a configuration of the
sensor network and defines the global state. Let Σ be a set of all configurations.
A system is a pair (Σ,→), where→: Σ×Σ is a transition relation. An execution
is a maximal sequence c0, c1, c2, . . . of configurations such that ci → ci+1 for each
i ≥ 0.

A transition is caused by the execution of a program on a node (all nodes run
the same program). Programs consist of rules of the following kind:

precondition1 −→ statement1
precondition2 −→ statement2

. . .

The preconditions are Boolean expressions based on the state of a node and
the states of its neighbors only (i. e., no global view of the network). The seman-
tics of a program is that whenever a node executes, it executes the statements
corresponding to a rule whose precondition evaluates to true. The statements of
a rule can only change the local state. It is assumed that reading the states of
the neighbors is atomic. The execution of a selected statement is also assumed
to be atomic. If more than one precondition is satisfied, then one of them is cho-
sen non-deterministically. A move of a node is the execution of a rule. A rule is
called enabled if its precondition evaluates to true, otherwise it is called disabled.
A node is called enabled if at least one of its rules is enabled.

A configuration c ∈ Σ is called legitimate relative to P if c satisfies P . Let
L ⊆ Σ be the set of all legitimate configurations. A system (Σ,→) is self-sta-
bilizing with respect to P if the following two conditions hold:

1. If c ∈ L and c→ c′ then c′ ∈ L (closure property).
2. Starting from any configuration c ∈ Σ every execution reaches L within a

finite number of transitions (convergence property).

Self-stabilization models the ability of a system to recover from failures under
the assumption that they do not continue to occur forever (eventual-quiescence).
To model long periods of time during which the system operates without errors,
it is assumed that eventually the system enters a last operational interval that
is infinitely long in which there are no more faults occur. This interval is called
the final interval. When a fault occurs the system enters a new configuration
and the algorithm restarts from this configuration. The same is true for changes
of the topology, i. e., adding or removing node or links.

Designing self-stabilization for anonymous networks under the distributed
scheduler is a difficult task and for some problems the non-existence of such
algorithms has been proven. A distributed scheduler may select two enabled
neighboring nodes to execute at the same step, and as a result both nodes may

Randomized Self-stabilizing Algorithms for WSNs 77

be enabled thereafter. It is not difficult to see that if any two neighboring nodes
never execute at the same step, the computation is equivalent to the centralized
scheduler. By local mutual exclusion, execution of two neighboring processes at
the same step is disabled (see [12,10] for example). If the nodes have unique
identifiers, then they can often be used for this purpose, e. g., [5]. Another solu-
tion is to use randomization. A system is called randomized, if the execution of
an enabled node depends on the outcome of a random experiment. A random-
ized system (Σ,→) is said to be probabilistically self-stabilizing with respect to a
predicate P if it satisfies the closure property as defined above and there exists
a function f : IN → [0, 1] satisfying limk→∞ f(k) = 0, such that the probability
of reaching a legitimate configuration, starting from an arbitrary configuration
within k transitions, is 1− f(k) (probabilistic convergence property).

The execution of the transitions of the enabled nodes is controlled by a sched-
uler. A schedule S is a sequence S1, S2, . . . of non-empty subsets of enabled nodes
called rounds. All nodes in Si may execute their moves in parallel, but the first
move in Si can only be executed after the last move of Si−1 has finished. At
the beginning of every round, all nodes evaluate the preconditions of their rules
and a subset of the enabled nodes is selected. Then all selected nodes execute
the statement of a single enabled rule. Schedules are an abstraction used to
model the semantics of concurrent execution, they are not an implementation
requirement. Schedules are restricted to satisfy certain fairness and atomicity
properties. A scheduler is fair if for any schedule S it selects, for all p ∈ N , for
infinitely many values of i, p ∈ Si holds. A central daemon scheduler is one that
satisfies |Si| = 1 for all i; it models the serial activation of one process at each
step. A distributed daemon scheduler satisfies |Si| ≤ n for all i, i. e., all enabled
nodes may execute their statements in parallel.

3 Self-stabilizing WSNs

Wireless sensor networks are inherently fault-prone due to the shared wireless
communication medium: message losses and corruptions due to fading, collisions,
and hidden-terminal effects are the norm rather than the exception [1]. In many
cases nodes can communicate with each other only with a very low probability.
Moreover, node failures due to crashes and energy exhaustion are commonplace.
These faults can drive a portion of a WSN to be arbitrarily corrupted and
hence to become inconsistent with the rest of the network. Since WSNs are
deployed in remote locations, in-situ maintenance is not feasible and therefore
sensor network applications should be self-healing. Self-healing ensures eventual
compliance with a specification upon starting from a corrupted state. A big
challenge for fault-tolerance is the energy constraint of the nodes. Applications
cannot impose an excessive communication burden on nodes. As a consequence,
self-healing of WSNs must be local and communication-efficient.

Self-stabilization is a specific form of self-healing that has many advantages
for WSNs. Large scale WSNs will be operating over a longer period of time and
additional nodes can be added at any time. Self-stabilizing eliminates the over-

78 V. Turau and C. Weyer

head of initialization all nodes in a consistent manner, actually state variables
need no initialization at all. The software of the nodes in a long running network
needs an upgrade over time, the software may be distributed over the wireless
medium. While switching to the new version, it will be impossible for all nodes to
simultaneously switch software. A self-stabilizing system guarantees completion
of this change in a finite number of operations. Once a node recovers after failing
(e. g., after a temporary power outage or due to a memory crash) its state may
be inconsistent with the rest of the system. Self-stabilization also guarantees
consistency of the nodes in this case. And finally, errors in transmissions leading
to corruption of data may be handled by self-stabilizing algorithms as well.

Most research on self-stabilizing algorithms has concentrated on the central
daemon scheduler. The main reason is that proving correctness of algorithms is
much easier than in the case of a distributed scheduler. But the concept of a
central daemon is against the spirit of Distributed Systems since it does not allow
for concurrency. Also, it is difficult to implement this scheduler in a WSN. In
the shared memory model each process can read the local states of all neighbor
processes without delay. This model is not suitable for sensor networks, instead
broadcasts, the communication primitive of wireless networks, should be used.
Herman introduced the cached sensornet transformation (CST) as an alternative
model for WSNs [13]. Let each node Ni ∈ N in the WSN have a single variable
si that completely represents the local state of the node. Let Ni have for each
neighbor Nj a variable ∇isj , which denotes a cached version of sj . Atomically,
whenever Ni assigns a new value to si, node Ni also broadcasts the new value
to its neighbors. Whenever a node Nj receives a new value for si, it immediately
(and atomically) updates ∇jsi. Because sending and receiving operations are
exclusive in the nodes, we suppose that receiving a cache update message cannot
interfere with concurrent assignment and broadcast by the receiving node. To
use a self-stabilizing algorithm under this transformation, the rules have to be
changed: at every node Ni each reference to sj is replaced with ∇isj for all j. The
execution of a statement does not modify the cache and receiving a broadcast
message only changes the cache and not the state of the node.

A system is called cache coherent if ∇jsi = si for all (Nj , Ni) ∈ E. Cache
coherence is invariant under local broadcast provided that no messages are lost.
Let A be a self-stabilizing algorithm under the central daemon scheduler. Then
the CST transformed algorithm is also self-stabilizing under the central daemon
scheduler provided the initial state of the execution was cache coherent and no
messages are lost or corrupt.

4 Example

Clustering is a useful technique to control the topology of WSNs. Clustering al-
gorithms should satisfy two properties: In order to allow efficient communication
between nodes, every node should have at least one clusterhead in its neighbor-
hood and no two clusterheads should be within each others mutual transmission
range. The latter property greatly facilitates the task of establishing an efficient

Randomized Self-stabilizing Algorithms for WSNs 79

MAC layer, because clusterheads will not face interference. These properties lead
to the concept of a maximal independent set in a graph: An independent set (IS)
I of G is a subset of N such that no two nodes in I are neighbors. I is a maximal
independent set (MIS) if any node v not in I has a neighbor in I. The following
self-stabilizing algorithm has been proposed by several authors. Each node has
a Boolean variable in. A state is called legitimate if the set of nodes v with
v.in = true forms a MIS of G. The rules of the algorithm are:

if (in = false ∧ ∀ neighbors v : (v.in = false)) −→ in := true
if (in = true ∧ ∃ neighbor v : (v.in = true)) −→ in := false

It was been proved in [14] that this algorithm self-stabilizes under the central
daemon scheduler after at most 2n moves. There is no guarantee about the
quality of the produced MIS, i. e., there may exist another MIS containing more
nodes. Clearly this algorithm does not stabilize under the distributed daemon
scheduler. Suppose the variable in of all nodes initially has the value true. Then
the first rule of all nodes is enabled. If all nodes execute, then the value changes
to false for every node and all nodes are enabled again. This process continues
forever. Applying the transformation described in the next section to this algo-
rithm yields a randomized algorithm that is probabilistic self-stabilizing under
the distributed daemon scheduler.

5 Transformation of Self-stabilizing Algorithms

This section presents techniques to transform algorithms that self-stabilize under
the central daemon scheduler such that they can be used in WSNs under the
distributed daemon scheduler. The WSNs under consideration are anonymous
networks, i. e., nodes have no globally unique identifiers. Nodes must be able to
distinguish their neighbors. It is assumed that messages are not corrupted (e. g.,
by using error correcting codes). For the time being it is also assumed that no
messages are lost. This restriction will be removed in the following part.

Let A be a self-stabilizing algorithm that stabilizes under the central dae-
mon scheduler in a finite number of moves. The main issue with the distributed
daemon scheduler is to enforce the separation of the executions in consecutive
rounds. If all nodes have a common understanding of time, then the rounds
can be organized under the assumption that the execution times of the state-
ments are bounded by a finite constant. There are several proposals for time
synchronization in WSN, e. g., [15]. The first step is to apply the cached sensor-
net transformation to A, call the resulting algorithm AC . The main issue with
AC in WSNs is to guarantee the atomicity of the moves as described above. To
deal with concurrent moves within a round, a random element is introduced. It
is assumed that each node is equipped with a random number generator rand.
Furthermore, all nodes have agreed on a constant p ∈ (0, 1). Let RuleAC be the
set of rules of algorithm AC , then for each rule

precondition −→ statement

80 V. Turau and C. Weyer

from RuleAC construct a new rule:

precondition −→ if (rand() < p) then statement

Call the randomized algorithm for this new set of rules ACR. Note that the
execution of a statement now involves a call to the random number generator
and that a statement of an enabled rule is not necessarily executed in the current
round. Algorithm ACR has the following property.

Theorem 1. Let A be a self-stabilizing algorithm that stabilizes under the cen-
tral daemon scheduler after a finite number of moves with respect to a predicate
P. If the initial configuration is cache coherent, then algorithm ACR is proba-
bilistic self-stabilizing with respect to P under the distributed daemon scheduler
provided that all broadcasts are reliable.

Proof. Suppose that algorithm A stabilizes after at most M moves. Consider
the execution of algorithm ACR. Since the initial configuration is cache coherent
all following configurations are also cache coherent since all messages are sent
successfully. Let (Si) be a schedule under the distributed daemon scheduler.
Assume that Si
= ∅ for all i > 0 (otherwise ACR stabilizes). The probability
that exactly one node is executed in round Si is equal to βi = cip(1 − p)ci−1

where ci = |Si| ≤ n. Let (bi) be a binary sequence where bi = 1 if exactly one
node executes during round i and 0 otherwise. Note that Prob(bi = 1) = βi and
Prob(bi = 0) = 1 − βi and that |{βi | i ∈ IN}| ≤ n. If the sequence (bi) has a
subsequence bj+1, bj+2, . . . , bj+M of length M where all elements have the value
1, then ACR stabilizes after round j+M , because this sub-schedule is equivalent
to a schedule under the central daemon scheduler. Let f(k) be the probability
that such a subsequence is not contained in b1, b2, . . . , bk. Then by Theorem 3
(see Appendix A)

lim
k→∞

f(k) = lim
k→∞

PM (k) = 0

and hence ACR is probabilistic self-stabilizing under the distributed daemon
scheduler. ��
Note that the requirement that the initial configuration is cache coherent can-
not be dropped. The problem is that if there are nodes with non-coherent caches
then there can be situations where no nodes are enabled and the predicate P is
not satisfied at the same time. Theorem 1 does not make a statement about the
rate of stabilization, e. g., about the probability that the algorithm stabilizes in k
moves. The expression 1−f(k) is a lower bound for this probability, but we have
no explicit expression for f(k). Also the values of ci are specific to the algorithm
under consideration. The lower bound 1−f(k) can be improved using the follow-
ing observation. A sub-schedule Sj , Sj+1, . . . , St is equivalent to a schedule under
the central daemon scheduler if the nodes of each round of that sub-schedule that
execute form an independent set. The proof of Theorem 1 covers the special case
of only a single node executing. Note that if two non-neighboring nodes, that
have a common neighbor, execute, then the probability that their broadcasts
during the sensornet transformation collide at the common neighbor is high.

Randomized Self-stabilizing Algorithms for WSNs 81

Unreliable Communication. In the following the assumption about the re-
liability of broadcasts is dropped, i. e., not all neighbors receive a broadcasted
message. Let q be the probability that a message is successfully transmitted
from one node to another. We make the assumption that all transmissions are
independent. Note that the loss of a message is not regarded as a transient fault,
it is a possible behavior of the system that is tolerated by the algorithm. Hence,
messages may also be lost during the final interval. The argument of the proof
of Theorem 1 can also be applied in this case. The probability that exactly one
node is executing in round i and that at the same time all broadcasts of this
node succeed is equal to

βi = p(1− p)ci−1
∑
j∈Si

qdj

where dj is the degree of node j. The set of all βi is again a finite set (nΔ

is an upper bound). From Theorem 3 it follows that the probability that this
algorithm halts after k rounds converges to 1 with increasing k. But that does
not necessarily mean that the algorithm is probabilistic self-stabilizing under the
distributed daemon scheduler. The problem is that the algorithm may reach a
non-cache coherent configuration in which no node is enabled. To overcome this
problem each node broadcasts the values of its public variables to its neighbors
periodically at the beginning of every round, call this algorithm ACRP . The
probability that exactly one node is executing in round i and that at the same
time all broadcasts succeed is equal to βi = qmcip(1 − p)ci−1 where m is the
number of links in the network. The proof of the following theorem is similar to
the proof of Theorem 1. Note that the initial configuration does not need to be
cache coherent.

Theorem 2. Let A be a self-stabilizing algorithm that stabilizes under the cen-
tral daemon scheduler after a finite number of moves with respect to a predicate
P. Let the probability that a message is successfully transmitted from one node to
another be fixed and assume that these events are independent. Then algorithm
ACRP is probabilistic self-stabilizing with respect to P under the distributed dae-
mon scheduler.

Broadcasting the public variables at the beginning of every round causes two
problems: It increases the total energy consumption and if all nodes make their
broadcast at the beginning of a round, many collisions will occur, probably
leading to a prolonged stabilization time. The second problem can be mitigated
if the nodes broadcast their data after a random waiting period. Another solution
is that nodes do not broadcast their data in each round, but make this decision
dependent on the outcome of a random experiment. Call this new algorithm
ACRPP . Let r be the probability that a node makes a broadcast. Then the
probability that exactly one node is executed in round i and that at the same
time all broadcasted messages are successfully received is equal to

βi = rnqmcip(1− p)ci−1

82 V. Turau and C. Weyer

where n is the number of nodes in the network. Using Theorem 3 it can be
shown that Theorem 2 also holds for algorithm ACRPP . To further reduce the
number of messages sent, the probability of a broadcast could be decreased in
every round after a state change, e. g., by reducing the probability to 50%. But
then it is no longer possible to prove the probabilistic self-stabilization behavior.

Periodic Broadcasting with Implicit Acknowledgments. Once all neigh-
bors of a node know the current state of the node, the node can suspend broad-
casting until the state of the node changes again. In order to implement this
technique a node needs the information that all neighbors know its current state.
To realize this task, nodes include in their broadcasts the latest received states of
all neighbors. This way a node can find out whether its current state is known to
all neighbors and may then stop the periodic broadcasting. The node still needs
to perform broadcasts to signal other nodes that it received their current state.
The following code illustrates this procedure. Nodes are in one of two modes:
Broadcast and Suspend, initially the mode is Broadcast. Also every time the
state of the node changes, the mode immediately changes to mode Broadcast.

� Mode Broadcast

while not all neighbors have acknowledged current state do
broadcast

end while
mode← Suspend

� Mode Suspend

if received broadcast from neighbor then
broadcast

end if

Call this new algorithm ACRPPA. Theorem 2 still holds for this algorithm since
the modifications have no influence on the stabilization behavior. An increase
in packet size is the price for reducing the number of messages. Larger packets
result in larger transmission times and may lead to more collisions, which may
slow down the stabilization process. The main advantage of this approach is
that after the system has reached a legitimate state, no broadcast messages are
needed until the next transient fault.

Unidirectional Links. WSNs suffer from unidirectional links where one sensor
can communicate with another with a high probability although the probability
of the reverse communication is very low. Unidirectional links are not consid-
ered useful in the context of WSNs, the reason is the lack of efficient MAC
layer protocols that work with unidirectional links (e. g., both RTS-CTS and
ACK based schemes cannot be used directly). Almost all self-stabilization al-
gorithms are defined for bidirectional links only. As an example, consider the

Randomized Self-stabilizing Algorithms for WSNs 83

algorithm presented in Section 4. If this algorithm is executed on a system with
unidirectional links then the result is no longer a MIS. We therefore propose to
exclude unidirectional links from being used by self-stabilization algorithms. To
meet this end the neighborhood protocol in use should discard such links. The
protocol described in [1] can be used for this purpose, it can also be combined
with the periodic broadcasts in order to reduce the total number of messages
sent. A link that continuously shows a low quality is discarded by this protocol,
at the same time new links are accepted as they appear. These events have to
be regarded as faults and therefore cannot occur during the final interval. In
order to avoid links to appear and disappear frequently over time, neighborhood
protocols have to find a balance between agility and stability. If the intervals be-
tween faults of this kind are long enough, the proposed algorithms may stabilize
during an interval, otherwise the stabilization process will be disrupted con-
siderably. Since the different algorithms have different stabilize times a general
statement about this kind of stability is impossible.

Failing Nodes. In the following the case of completely failing nodes is con-
sidered. If a node fails it stops broadcasting its state, but neighboring nodes
continue to regard this node as a neighbor. The remedy is to associate with
each cache value ∇isj of a node Ni a time to live (TTL) value. The TTL value
is renewed every time the node receives a message with the state of neighbor
Nj and it is decreased every round in which no such message is received. If a
cache value ∇isj is not confirmed within TTL rounds it is discarded and Ni

is no longer regarded as a neighbor of Nj. As a consequence a disabled node
might get enabled. Thus, the situation is comparable to a discarded link and the
discussion from the last section applies.

The concept of TTL values cannot be used in combination with the above
described technique to limit the periodic broadcasts with implicit acknowledg-
ments, i. e., algorithmACRPPA. The problem is that a node can no longer distin-
guish a node that suspended broadcasting from a failed node. As a consequence,
the failed node could stay permanently in the neighborhood list of a node. This
may in turn lead to a non-coherent cache. But TTL values can be combined
with algorithm ACRP . The value of TTL should be large enough to distinguish
the case of a failed node from a node that is temporary not able to communi-
cate with its neighbor. Otherwise nodes with an instable link may disappear and
appear repeatedly in the neighbor list of a node with negative consequences for
the stabilization process. The handling of newly introduced nodes requires no
special treatment. In case the join and leave rates are low, the algorithm may
stabilize during intervals with fixed topology. This kind of stabilization behav-
ior depends on the number of moves required to stabilize the system after the
failure/introduction of a node. The technique of TTL values can also be com-
bined with algorithm ACRPP . In this case the relationship between TTL and
r, the probability that a node makes a broadcast, needs to be carefully tuned.
Otherwise, the algorithm will not stabilize during intervals with fixed topology.
A detailed analysis of these situations is outside the scope of this paper.

84 V. Turau and C. Weyer

6 Experiments

The stabilization behavior of the proposed transformations were further analyzed
in a series of experiments with a MIS algorithm. The experiments are based on
simulations and on a real WSN. Let A be the MIS algorithm based on the
two rules presented in Section 4. The stabilization behavior of algorithm ACR

was analyzed in a simulation. At the beginning of each round the set Nen of
enabled nodes was determined and after this step all nodes in Nen executed
the statements of the enabled rule (without checking whether the node was still
enabled). As a consequence a node may execute a rule, even though it is no longer
enabled. The reason for this mode of operation is to simulate the interleaving
execution of the nodes. The algorithm was run on several graph classes:

Gn,q: Graphs with n nodes and any pair of nodes is connected by an edge with
probability q ∈ [0, 1].

Kn: Complete graphs with n nodes.
Un,d: Unit disc graphs with n nodes where the locations of the nodes are

randomly selected in a square of side length d.

The Unit disc graph model is included, because it is regularly used in theoretical
models of WSNs. For each graph algorithm ACR with p = 0.5 was executed 500
times.

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

ro
un

ds

n

Kn
G(n,0.5)

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

ro
un

ds

n

U(n,5)
U(n,10)

U(n,100)

Fig. 1. Average number of rounds of algorithm ACR with p = 0.5 before stabilization
for various classes of graphs

Figure 1 shows the average number of rounds the algorithm needed to stabilize
for the different classes of graphs (note the logarithmic scale of the x-axis).
The data shows that the number of rounds for classes Kn and Gn,q is roughly
proportional to log2 n. For Unit disc graphs the number of rounds grows slightly
faster. Figure 2 shows the average number of the sum of moves executed by all
nodes before stabilization. The data shows that roughly n/2 moves were needed
on the average independently of the class of graphs. Interestingly our experiments
also showed that the average number of moves for ACR is only slightly higher
than in the case of a central daemon scheduler.

Randomized Self-stabilizing Algorithms for WSNs 85

 1

 4

 16

 64

 256

 1024

 4096

 16384

 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
ov

es

n

Kn
G(n,0.5)

 1

 4

 16

 64

 256

 1024

 4096

 16384

 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

m
ov

es

n

U(n,5)
U(n,10)

U(n,100)

Fig. 2. Average total number of moves of algorithm ACR with p = 0.5 before stabi-
lization for various classes of graphs

The main weakness of the transformations described above with respect to
WSNs are the assumptions about the atomicity of the cached sensornet trans-
formation and about the reliability of message delivery. To analyze the impact of
these assumptions an experiment with a real WSN was carried out. The experi-
ment was based on algorithmACRP . The sensor network consisted of 25 nodes of
type ESB, a sensor node platform developed by the Free University Berlin [16].
A node consists of the micro controller MSP 430 from Texas Instruments, the
transceiver TR1001, which operates at 868 MHz at a data rate of 19.2 kbit/s,
some sensors, and a RS232 serial interface. Each node has 2KB RAM and 64 KB
EEPROM. The lowest layer of the implementation is a synchronization protocol
that is used to force the nodes to operate in rounds, each round had a duration of
10 seconds. In order to reduce the possibility of collisions, the cached sensornet
transformation was implemented such that each node randomly selected an in-
stant during each round and broadcasted its state. At the end of each round the
enabled nodes executed an enabled rule with fixed probability p. To analyze the
influence of the value of p on the stabilization time, the experiment was repeated
four times with p = 0.25, 0.5, 0.75 and 1.0. The sensor nodes were distributed in
a grid-style inside a large lecture hall. Each node could communicate with its im-
mediate neighbors, depending on the position in the rectangular grid a node had
between 3 and 8 neighbors. Messages from nodes further away were discarded.
The transmissions power of the nodes was reduced such that this topology was
realized and no avoidable interference was caused.

The duration of each experiment was 400 seconds, i. e., 40 rounds. Initially
no node was a clusterhead (i. e., the variables in had the value false). The
algorithm reached a legitimate configuration for the probabilities p = 0.25, 0.5
and 0.75 within the first 19 rounds. Without randomization (e. g., p = 1.0) the
algorithm did not reach a legitimate configuration within 40 rounds. In this case
in every round more than 50% of all nodes made a move, as a consequence the
number of clusterheads alternated between a few nodes (0,1 or 2) and about
15-20 nodes. The particular style of initialization of the variable in caused this
pattern to emerge. In the first round all nodes were enabled, these nodes turned
into clusterheads enabling all nodes in round two. At the end of this round no

86 V. Turau and C. Weyer

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of

round

Probability of Rule Execution: 0.25

Nodes
Clusterheads

Rule Executions

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of

round

Probability of Rule Execution: 0.50

Nodes
Clusterheads

Rule Executions

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of

round

Probability of Rule Execution: 0.75

Nodes
Clusterheads

Rule Executions

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

nu
m

be
r

of

round

Probability of Rule Execution: 1.00

Nodes
Clusterheads

Rule Executions

Fig. 3. Wireless sensor network with 25 nodes executing algorithm ACRP to compute
a minimum independent set. The experiment was repeated with four different values of
p. The diagrams depict the number of nodes, clusterheads and rule executions during
the first 40 rounds.

node was a clusterhead. This pattern would have been repeated if no messages
had been lost. When a messages is lost after a node has changed its state, the
caches at the neighbors of this node are no longer coherent. Because of this
phenomenon only 20 nodes made a move in round three.

The other three experiments suggest that the optimal stabilization time is
achieved for p = 0.5. In this case, the system stabilized after 7 rounds making
a total of 44 moves. In case p = 0.25 the system could have stabilized after
round 12, but the execution of the corresponding rule was deferred for another
six rounds until round 18. The reason is that with p → 0 the behavior of the
transformation converges to that of the central daemon. The sequence of exper-
iments also shows that the number of moves decreases with the value of p: 136,
44, and 36. A detailed analysis is part of future work.

7 Related Work

Self-stabilization as a tool to achieve fault tolerance in WSNs was first inves-
tigated by Herman [13]. He surveys standard models of self-stabilization and

Randomized Self-stabilizing Algorithms for WSNs 87

relates these to WSNs. In particular, the cached sensornet transformation – a
construction that transforms a sensor network to a central daemon model –
is introduced. Based on the assumption that all links are bidirectional and that
nodes possess a CSMA/CA capability, probabilistic stabilization of an algorithm
for maximal independent sets is proven.

The work of Herman is extended by Kulkari et al. [17]. To overcome the
read/write model – which is used in many existing algorithms, but not applica-
ble to WSNs – the write all with collision model (WAC) is introduced. WAC
captures the computations of sensor networks. Intuitively, in one atomic action,
a node can update its own state and the state of all its neighbors. If two nodes
simultaneously try to update the state of a node, then the state of this node is
unchanged. Transformations from existing models to the WAC model and vice
versa are presented. To obtain the transformed program that is correct in the
WAC model, the nodes are organized in a ring. Such a ring can be statically em-
bedded in any arbitrary graph by first embedding a spanning tree in it and then
using an appropriate traversal mechanism to ensure that each process appears
at least once in the ring. The nodes execute one after the other as they appear
on the ring. For timed systems a transformation using a collision-free time-slot
based protocol is presented. Under some assumptions it is shown that if the
given algorithm is self-stabilizing then the transformed algorithm is also self-
stabilizing for a fixed topology. It is also argued that in some cases for untimed
systems self-stabilization preserving transformations into the WAC model are
not possible. A distributed algorithm for TDMA slot assignment in WSNs that
is self-stabilizing to transient faults and dynamic topology change is presented in
[18]. The work of Römer et al. on role assignment in WSNs is in parts related to
self-stabilizing algorithms [19]. The authors present heuristics to maintain local
cache tables at the nodes. They employ randomized delays in order to avoid
temporary inconsistencies due to the lack of sequentialization.

Refining self-stabilizing algorithms using tight scheduling constraints into cor-
responding algorithms for weaker scheduling constraints, while preserving the
stabilization property, has been subject of serious research in the last decade.
In most cases the core of the transformations is a self-stabilizing local mutual
exclusion algorithm based on unique node identifiers [10]. Kakugawa et al. have
developed an algorithm that transforms a serial model program to a distrib-
uted model [20]. A timestamp based self-stabilizing concurrency control (CC)
protocol is incorporated in the transformed program. After the CC protocol sta-
bilizes, it is guaranteed that for each execution of the transformed distributed
model program, there always exists an equivalent execution of the original ser-
ial model program. Therefore, if the original program is correct with respect to
self-stabilization, the transformed program is also self-stabilizing. A drawback
of this approach is the efficiency of transformed algorithms, they require more
messages than the ones coded from scratch. Furthermore, these transformations
cannot be easily adopted to the case of unreliable broadcasts.

Mizuno and Nesterenko considered distributed systems where all processors
have unique identifiers. They propose a procedure to transform a self-stabilizing

88 V. Turau and C. Weyer

algorithm under the central daemon scheduler to an equivalent self-stabilizing
algorithm that runs on an asynchronous shared memory parallel computing sys-
tem [12]. Timestamps are used to guarantee mutually exclusive execution of
guarded commands among neighbor processes.

8 Conclusion

The transformations presented in this paper allow to utilize self-stabilizing al-
gorithms developed for the central daemon scheduler in WSNs. Foremost these
are algorithms for coloring, spanning trees, independent and dominating sets
[5,6,7,8,9]. Furthermore, this work simplifies the design of self-stabilizing for
WSNs, developers can work with the central daemon scheduler and do not have
to take into considerations the imponderabilities of wireless communication. The
proposed transformations are easy to implement and do not pose much overhead.
The result of our simulations and experiments demonstrate for a self-stabilizing
MIS algorithm that the transformed algorithm stabilizes quickly. The main draw-
back of self-stabilizing algorithms for WSNs is the dynamic nature of the com-
munication topology. We conjecture that the transformed algorithms have a very
good stabilization behavior if used in conjunction with a stable neighborhood
protocol to deal with connections that are susceptible to interference. It remains
to analyze the influence of the probability threshold used in the transformations.
In future we will investigate criteria for self-stabilizing algorithms operating in
dynamic topologies.

References

1. Turau, V., Weyer, C., Witt, M.: Analysis of a Real Multi-hop Sensor Network
Deployment: The Heathland Experiment. In: 3rd Int. Conf. on Networked Sensing
Systems (INSS06). (2006) 6–13

2. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the ACM 17(11) (1974) 643–644

3. Dolev, S.: Self-Stabilization. MIT Press (2000)
4. Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1) (1993) 45–67
5. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs.

In Butelle, F., ed.: OPODIS. (2000) 55–70
6. Karaata, M.: A self-stabilizing algorithm for finding articulation points. Theoretical

and Mathematical Aspects of Computer Science 10(1) (1999) 33–46
7. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: A self-stabilizing

distributed algorithm for minimal total domination in an arbitrary system graph.
In: IPDPS, IEEE Computer Society (2003) 240–243

8. Chaudhuri, P.: A self-stabilizing algorithm for minimum-depth search of graphs.
Information Sciences 118(1-4) (1999) 241–249

9. Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree construction
on message-passing systems. In: Distributed Computing 15th Int. Symposium,
Springer LNCS:2180. (2001) 194–208

Randomized Self-stabilizing Algorithms for WSNs 89

10. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local
mutual exclusion and daemon refinement. Chicago Journal of Theoretical Com-
puter Science 2002(1) (2002)

11. Shukla, S., Rosenkrantz, D., Ravi, S.: Observations on self-stabilizing graph al-
gorithms for anonymous networks. In: 2nd Workshop on Self-Stabilizing Systems.
(1995) 7.1–7.15

12. Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Inf. Process. Lett. 66(6)
(1998) 285–290

13. Herman, T.: Models of self-stabilization and sensor networks. In Das, S.R., Das,
S.K., eds.: IWDC. Volume 2918 of LNCS., Springer (2003) 205–214

14. Hedetniemi, S., Hedetniemi, S., Jacobs, D., Srimani, P.: Self-stabilizing algorithms
for minimal dominating sets and maximal independent sets. Comput. Math. Appl.
46(5–6) (2003) 805–811

15. Römer, K., Blum, P., Meier, L.: Time synchronization and calibration in wireless
sensor networks. In Stojmenovic, I., ed.: Handbook of Sensor Networks: Algorithms
and Architectures. John Wiley & Sons (2005) 199–237

16. ScatterWeb. http://www.scatterweb.net (2006)
17. Kulkarni, S.S., Arumugam, U.: Transformations for Write-All-with-Collision

Model. In Papatriantafilou, M., Hunel, P., eds.: OPODIS. Volume 3144 of LNCS.,
Springer (2003) 184–197

18. Herman, T., Tixeuil, S.: A Distributed TDMA Slot Assignment Algorithm for
Wireless Sensor Networks. In: ALGOSENSORS. Volume 3121 of LNCS., Springer
(2004) 45–58

19. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor
networks. In: 3rd ACM Conf. on Embedded Networked Sensor Systems. (2005)

20. Kakugawa, H., Mizuno, M., Nesterenko, M.: Development of self-stabilizing dis-
tributed algorithms using transformation: case studies. In: 3rd Workshop on Self-
Stabilizing Systems. (1997) 16–30

A Appendix

The proof of the following theorem is omitted due to space limitations.

Theorem 3. Let D be a set of real numbers strictly between 0 and 1 and (βi) an
infinite sequence with βi ∈ D. Furthermore, let (bi) be an infinite sequence with
bi ∈ {0, 1} and Prob(bi = 1) = βi for all i ≥ 0. For m ∈ IN let (1)m be the finite
sequence 1, 1, . . . , 1, i. e., 1 is repeated m times. Let Pm(k) be the probability that
(1)m is not a subsequence of b1, b2, . . . , bk. If D is a finite set or lim

i→∞
βi > 0 then

lim
k→∞

Pm(k) = 0 for all m ∈ IN.

The Case for Virtualized
Wireless Access Networks

Frank A. Zdarsky, Ivan Martinovic, and Jens B. Schmitt

disco | Distributed Computer Systems Lab
University of Kaiserslautern, 67655 Kaiserslautern, Germany
{zdarsky, martinovic, jschmitt}@informatik.uni-kl.de

Abstract. Densely populated areas such as city centers are often sprin-
kled with numerous wireless access points operated for commercial or
private use. Together they create what’s known as tragedy of the com-
mons phenomenon: without proper coordination, a significant amount of
license-exempt radio frequency resources is wasted due to contention at
shared medium access. In this paper we argue that both commercial and
private operators would benefit if their access points were enabled to co-
operate and form a single virtual access network that manages available
radio resources itself in a globally optimal way. On top of this virtual
network, each operator would then allocate resource shares for his own
disposal. As a first step towards this vision we then present a distributed
algorithm and protocol that allows previously unrelated access points
to form and manage a single network in a self-organized manner and
demonstrate its effectiveness.

1 Introduction and Motivation

The airspace is becoming crowded as increasingly many IEEE 802.11-based wire-
less access points are deployed in close proximity of each other. Many of these
access points are part of small home or company networks that restrict access to
few selected clients, while others belong to networks that try to reach city-wide
coverage and offer Internet access to a wide audience. Such large-scale wireless
access networks are often deployed for profit by wireless ISPs. However, wireless
community networks (e.g. [1]), which offer free Internet access based on spare ca-
pacity donated by their members, are rapidly gaining in popularity. Furthermore,
some cities are deploying so-called “municipal wi-fi” networks offering Internet
access free of charge[2]. As a consequence of these parallel infrastructure deploy-
ments, “hotspot areas” may be covered by several networks at the same time.
In fact, as observed in [3], areas with densities of more than 10 (and even up to
80!) overlapping access points are not uncommon in some major U.S. cities.

Considering that the number of non-overlapping channels available for IEEE
802.11 wireless LANs is very low and that this number will be reduced further
by channel combining techniques intended to increase transmission speeds, it is
not surprising that network performance in environments with high access point

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 90–104, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Case for Virtualized Wireless Access Networks 91

densities is severely degraded due to contention at shared medium access. As a
result it becomes challenging at least to provide a certain service with a reliably
high quality, which is unfortunate in particular in the light of such applications as
Voice/Video over WLAN. While each provider may locally optimize his network,
choosing the best installation sites and operation parameters for its access points,
the lack of information about neighboring access points means that from a global
perspective the available license-exempt frequency resources are not utilized to
their full potential. This is especially true compared to a well-planned wireless
network operating in licensed frequency bands.

Economists use the term “tragedy of the commons”[4] to denote a class of phe-
nomena in which the use of a common good (here the license-exempt frequency
resources) by utility-maximizing individuals leads to very low overall utilizations
of the good. Their solution is to either restrict the use of the common good to
selected individuals or to introduce binding cooperation mechanisms between
individuals[5].

We contend that all operators of access points, commercial or private, would
benefit from the introduction of cooperating mechanisms between their wireless
LANs as well. In this paper we therefore introduce the concept of a virtualized
wireless access network. The basic idea is to allow wireless access points from
different physical networks and operators to form a single virtual access network
that self-manages its available resources as efficiently as possible. Then, on top
of this virtual access network, each contributor to the network may then create
a logical access network that uses a share of the managed resources which is
proportional to the amount of the original contribution. Logical networks should
appear to wireless clients as independent physical networks and allow providers
to offer the same set of services as in their own physical network and under the
provider’s branding.

The virtualized wireless access network has advantages for both private users
as well as commercial users:

– Wireless ISPs benefit from reducing their deployment and maintenance cost
and may be able to serve customers in locations where they do not have own
installation sites for access points or where these sites are not profitable.
Most importantly, however, they do not have to concern themselves with
radio management of their access network anymore and may offer a more
reliable service to their customers, as contention from other wireless LANs
is reduced.

– Private users benefit from lower contention from other LANs as well, but
also from the possibility of free access in other locations of the city, where
participating access points are available.

In the following section we discuss related work, before giving a more in-depth
overview of technical aspects regarding virtual wireless access networks in section
3. We demonstrate in section 4 that cooperation between wireless LANs leads to
a significant reduction in global network contention. Following this we introduce

92 F.A. Zdarsky, I. Martinovic, and J.B. Schmitt

in section 5 a distributed algorithm and protocol that allows access points to
form a virtual network and manage its resources in a distributed, self-organized
manner and evaluate the algorithm in section 6, before concluding the paper
with a brief outlook.

2 Related Work

Our proposed concept of a virtualized wireless access network is in fact the logical
extension of the concept of a virtual access point [6] that has recently caught on
with wireless ISPs, as it allows them to share access point deployment, and
maintenance cost. The difference is that we envision a single, city-scale access
network to which private households may contribute (and benefit from) just the
same as commercial or public ISPs. This network should be self-forming and
self-managing, as the nature of this network does not lend well to a centrally
managed network.

One objective of a self-managing virtual wireless access network should be to
utilize available resources efficiently by minimizing contention in the network.
A number of contributions in the literature have already treated the general
wireless LAN planning problem. These schemes are of little use in our context,
as they assume that a very regular and optimal placement of access points is
possible. Nevertheless we mention them for completeness: [7] have formulated an
access point placement problem with the objective of minimizing contention, [8] a
channel assignment problem. Joint placement and channel assignment schemes
have been proposed, where co-channel overlapping may be allowed [9] or not
[10]. In contrast to these contributions on the planning of wireless LANs, in
[11] we proposed a model for the case where access point locations are already
given and the problem is to determine the configuration of transmission power,
channel assignment and associations of stations to access points that minimizes
contention in the given network.

Online radio resource management schemes, on the other hand, are more
closely related, as they assign operating channels, control transmit power, and
perform load balancing of stations over access points online. Both centralized and
decentralized schemes have been proposed in the literature (e.g. [12] and [13],
respectively) and are used in existing products (e.g. [14] and [15], respectively).
Their focus lies on controlling contention inside a single, closed, well-planned
network domain, though. The problem of actively controlling inter-domain con-
tention has received little attention in the literature. [16] suggest the use of a
radio resource broker that tries to control contention between different wireless
LANs by assigning to each LAN the set of channels and transmission powers
that it may use. This centralized approach seems to be most appropriate for a
small number of networks whose operators have reached agreements concerning
the use of such a broker. Finally, [3] suggest algorithms that allow access points
to adjust transmission power levels and rates automatically and independently
from other access points.

The Case for Virtualized Wireless Access Networks 93

3 Virtualized Wireless Access Networks

A virtualized wireless access network (VWAN), as used in this paper, is charac-
terized by the fact that it consists of a set of wireless access points (APs) from
different physical access networks (usually belonging to different administrative
domains). These APs manage available resources themselves rather than requir-
ing central management. They manage resources in a way that maximizes the
global utilization of the network, and they allow logical subnetworks to be formed
on top of the VWAN. In this section we describe the operation of a VWAN and
discuss the most important design issues, some of which are still open at this
point.

Creation and Maintenance of a Virtualized Wireless Access Network. Adding an
access point to an existing VWAN should be an automatic process and should
not require manual intervention of an operator. Therefore, an AP should on
power-up perform a passive or active scan of the wireless medium for other
APs that are already part of the VWAN. This is recognized by the presence of
a specific Information Element (IE) contained in the periodically broadcasted
beacon management frames of member access points. This IE also indicates the
IP address at which the AP sending the beacon may be contacted by the new
member. All further communication between the new AP and the old members
is then sent via the wired backbone. During the life-time of the VWAN, APs
are constantly monitoring whether a reconfiguration of the network with respect
to channel assignment, transmit power settings, association of stations to access
points, etc. would lead to a higher utilization of network resources. If so, this
reconfiguration is performed automatically, without requiring intervention by
the owners of the APs. In section 5 we propose an algorithm and protocol that
enables such self-management of access points.

Creation of Logical Subnetworks. Every operator of an AP that is part of the
VWAN may monitor the current state of the whole network, e.g. querying infor-
mation about the number, locations and utilizations of other APs in the network.
To create his own (logical) wireless access network, the operator may then select
a subset of available physical APs and assign a resource share of each AP to the
logical access network. This allows operators to serve customers in areas where
they do not have infrastructure of their own. The amount of resources that an
operator may reserve for his logical network should be a function of what he has
contributed to the VWAN. How exactly the “exchange rate” is determined is still
an open issue. However, it might be reasonable for operators to earn more credit
for establishing access points in areas where only few access points already exist,
spend more on resources of popular access points, and have a discount on using
resources on own access points.

Sharing of Access Points. The sharing of a physical AP between different op-
erators is enabled by a concept called virtual access point (VAP)[6]. A VAP is
a logical entity that exists within a physical AP. When a single physical AP

94 F.A. Zdarsky, I. Martinovic, and J.B. Schmitt

supports multiple VAPs, each VAP appears to stations to be an independent
physical AP. A VAP is an emulation of a physical AP at the MAC layer. This
has the advantage that no additional radio hardware is needed to implement
VAPs. On the other hand this means that all VAPs of a single physical AP
operate on the same channel, which is not a real restriction in this context,
though.

The most common way of implementing VAPs is to assign each VAP its own
BSSID (the IEEE 802 48-bit MAC address of the AP) and to let each VAP
broadcast its own beacon frames. As beacons contain the SSID (the 32 byte
network identifier string) and the capability information for each network, it
is possible for providers to use their own branding for their VAPs and offer
different authentication mechanisms, transmission rates, etc., despite sharing a
single physical AP. A disadvantage of sending one beacon frame per VAP is the
increased bandwidth overhead, which means that this approach does not scale
abritrarily well. However, as nicely argued in [6], other approaches of using only
a single BSSID and single or multiple SSIDs per beacon do not offer the same
functionality or are not compatible with legacy stations. Furthermore, the same
scalability issues would arise when using different physical APs. A solution may
be to aggregate some logical wireless access networks under the same VAP, which
should at least be possible for those operators that are not commercial ISPs, but
maybe members of a wireless community network.

Sharing of Internet Uplinks. As argued in the introduction, we see benefits in
allowing home users to participate in the VWAN as well. This raises questions
on whether their uplink to the Internet is sufficient for this type of application.
However, this problem is analogous to that in wireless community networks.
Some of the more sophisticated open-source AP firmwares that specialize on
wireless community networks (e.g. DD-WRT [17]) are already using techniques
which may to some extent also be applied in this context.

A first issue is the available bandwidth in the wired uplink to the Internet.
Using QoS mechanisms it is not difficult to isolate the traffic of different VAPs
and assign them the share of resources that the VAP’s operator has paid for. But
is the capacity of the Internet uplink sufficient to make it worthwhile for a com-
mercial wireless ISP (WISP) to use APs of home users? At the moment, many
households have Internet uplinks that are much slower than an IEEE802.11a
wireless access link. However, considering the increasing availability of high-speed
Internet access, such as ADSL2+, in private households, due to the convergence
of Internet, Television, and Telephony (so-called “triple-play”), the gap between
wireless and wired link capacities in home networks may become much narrower
in the future. Furthermore, in wireless community networks using mesh-routing,
but also in so-called mushroom networks[18], it is not uncommon to route traffic
to the Internet via wireless links to multiple wired uplinks, thereby increasing
the available uplink capacity.

Secondly, there is the problem that home users are usually assigned a single
IP address by their ISP, which is furthermore often only dynamically assigned.
Again, wireless community networks show that with NAT and port forwarding

The Case for Virtualized Wireless Access Networks 95

this need not be an issue. When IPv6, and in particular MobileIPv6, continue
to gather momentum, this problem may also be mitigated.

Until then our approach is to set up static tunnels from each VAP in a foreign
network to the respective provider’s home network and use GRE to tunnel data
between the two. This has the advantage that to both provider and its customers
this process is transparent: they will not notice that they are in a different
network, other than an increase in round-trip-time.

Security Issues. There are several security issues that have to be solved to make
VWANs fully usable. For example, can a WISP trust a home user (and vice
versa) not to tamper with the wireless AP in order to eavesdrop on connections or
tamper with accounting? How can it be monitored that a VAP actually provides
the assured bandwidth share? We cannot yet offer satisfactory solutions to these
problems and leave them for future work.

4 Effect of Cooperation on Contention

In this section we describe an experiment that exemplifies the significant reduc-
tions in network contention that may be gained through cooperation between
operators of wireless LANs for different access point densities. This evaluation
is based on the mathematical optimization framework that we proposed in [11].
It allows to determine the channel assignment, transmit power setting and sta-
tion association that minimizes the contention level in a network. The contention
level counts how many nodes actually interfere with a given node’s transmission,
summed over all nodes. We refer the reader to our previous work for further
details.

Our reference scenario contains 25 access points (APs) arranged on a 5x5 grid.
The distance between grid lines is chosen as twice an AP’s transmission range,
in other words the distance at which a node can just receive the AP’s signal at
its minimum required power level. We then generate two stations per AP, one lo-
cated somewhere at the maximum transmission range, the other located between
the AP and the maximum transmission range, with uniform distribution.

Path losses between each pair of nodes are calculated based on the empirical
indoor propagation loss model recommended in ITU-R P.1238-2 [19]. The max-
imum transmission power of each node is assumed to be 20dBm (or 100mW),
which is the maximum power allowed for IEEE 802.11b wireless LANs in Eu-
rope. We assume that a node detects a busy medium when interfering signals
are stronger than -84dBm and that it requires a minimum signal strength of
-82dBm to successfully decode a signal. These are typical values for an Orinoco
Gold IEEE 802.11b adapter. The number of non-overlapping channels is assumed
to be 3.

The APs of the reference scenario described above are then squeezed towards
the center or stretched away from it to yield new scenarios of different AP
densities. This technique is analogous to the one used in [3]. We create scenarios
with stretch factors between 0.0 and 1.5, where a stretch factor of 1.0 denotes

96 F.A. Zdarsky, I. Martinovic, and J.B. Schmitt

the reference scenario, and a stretch factor of 0.0 the situation where all APs are
squeezed together at the center.

For all scenarios we use our optimization framework to determine the mini-
mal possible contention level that may be achieved by standard non-cooperating
wireless LANs and compare them to those that may be achieved by wireless
LANs which cooperate in reducing contention. In the non-cooperative case, ac-
cess points select their operating channel independently from their neighbors by
scanning for free channels and then choosing a free channel or, if no free channel
is available, one of the busy channels randomly. The results are shown in Fig.1,
which for reference also includes a theoretical lower bound (TLB) that denotes
the lowest contention level for any set of networks with the given number of
access points and stations.

Fig. 1. Contention levels with and without cooperation for varying access point
densities

The results show that in very sparse wireless LAN scenarios, non-cooperative
wireless LANs achieve the same or only slightly worse contention values than co-
operative LANs. As the density increases (that is the stretch factor decreases),
contention in the non-cooperative approach increases rapidly, as more and more
co-channel overlapping occurs. The slight decrease at a stretch of 0.5 can be ex-
plained by the fact that starting from this stretch APs are in direct transmission
range of each other and therefore try to change to a free channel if possible.
In contrast, cooperation between wireless LANs, that is coordinating the use of
operating channels and station associations, reduces contention significantly (for
example already by a factor of 2 at stretch 0.5) even when AP densities are high.

Note that contention occurring at stretch factors >1.0 is due to the fact that
while nodes at this distance are outside their transmission range as specified
above, the strength of the received signal may still be greater than the signal
strength at which the Clear Channel Assessment function of a node reports a
busy channel.

The Case for Virtualized Wireless Access Networks 97

5 Distributed Coordination Algorithm

In this section we propose a distributed algorithm that allows neighboring access
points to cooperatively reduce contention, based solely on joint knowledge about
their vicinity. It consists of five modular building blocks:

– Data dissemination, in which an access point (AP) discovers other APs
within its horizon and collects information about the stations (STAs) that
each of these APs is aware of and is able to cover at the required signal
strength.

– Local negotiation, in which an AP suggests a local reconfiguration of the
network to all APs within its horizon, waits for their feedback on how this
reconfiguration would affect network performance in their vicinity and then
decides either to commit or abandon this reconfiguration.

– A fitness function with which to evaluate the current state of the network
within an APs horizon and the effect of a proposed reconfiguration.

– A local reconfiguration algorithm that is used to find better local reconfigu-
rations.

– A coordination mechanism to determine, which APs are allowed to propose
local reconfigurations and when.

An AP’s horizon defines which other APs and STAs in its geographical vicinity it
knows and cooperates with in finding improvements. When choosing the extent of
the horizon, one has to make the typical trade-off between the chances for finding
the globally optimal configuration and the computational effort and signaling
overhead. In our experiments we have defined the horizon of an AP i as the
set of all APs whose transmissions AP i can receive directly or can infer from
listening to stations from other APs in range.

5.1 Data Dissemination

APs initially find out about their neighbors by scanning for periodic beacon
signals on all available channels. Upon receiving a beacon from a previously
unknown neighbor, the AP sends out a WELCOME message to its new neighbor,
both on the wireless link and on the wired backbone network. This assumes that
the IP address of the new neighbor is known. The most simple solution is to let
each AP include its IP address as an additional Management Frame Information
Element in its broadcasted beacons.

Both the WELCOME message and the reply to it (WELCOME_ACK) con-
tain information about the sending AP as well as about all STAs which the
sending AP is currently aware of and whose minimum signal strength require-
ments it can meet. By sending these messages over both the wireless link and
the backbone, we can further gain information about whether the wireless link
is asymmetric or not, that is if one access point is able to hear the other but not
vice versa.

98 F.A. Zdarsky, I. Martinovic, and J.B. Schmitt

Furthermore, all active APs periodically send UPDATE messages to all APs
within their horizon containing their current STA information list. This infor-
mation has an explicit expiration time, so if an AP does not receive UPDATE
messages from a neighbor for a certain duration, it assumes the neighbor has de-
activated without signing off. UPDATE messages are always sent via the wired
backbone, so that this soft-state approach does not consume valuable wireless
resources.

We also consider the case that two APs that cannot hear each other directly
nevertheless produce contention in each other’s BSS. This may happen when an
STA is located in between the AP it is associated to and another AP that is
within contention range. The STA may then notify its own AP of the contending
AP’s presence so that both APs may contact each other using the mechanism
described above.

5.2 Local Negotiation

Based on its knowledge about APs and STAs within its horizon, an AP may run
a local optimization algorithm to search for better configurations for itself and
its neighboring APs. If an AP finds a configuration that improves contention
within its own horizon, it suggests the new configuration to its neighbors by
sending them an OFFER message with the new configuration.

Upon receiving an OFFER, every neighbor determines the effect of the config-
uration change on their part of the network. Note that the sets of nodes within
the horizons of the APs sending the OFFER and receiving the OFFER is usu-
ally not identical, although the intersection should usually be large. All receivers
of an OFFER then answer with an OFFER_REPLY message containing the
predicted change in contention that would result from actually committing the
configuration change. If the net effect of the reconfiguration proposal is posi-
tive, the initiating AP sends a COMMIT message to all neighbors, who then
update the local knowledge about their neighborhood and possibly change the
radio channel they operate on or instruct individual STAs to reassociate with a
different AP.

There are three cases in which the initiating AP sends a WITHDRAW mes-
sage to its neighbors in order to cancel a reconfiguration attempt. The first case
is that the initiator calculates a negative or zero net effect of the reconfiguration
proposal. Secondly, it may happen that one of the receivers of an OFFER mes-
sage is already processing a reconfiguration proposal by a different AP which
has not been committed or rejected yet. It then refuses the new OFFER by
answering with a BUSY message. Finally, if at least one of the neighbors does
not respond to the OFFER within a certain time interval, the initiator assumes
the message was lost or the receiver has deactivated.

5.3 Reconfiguration Algorithms

In order to find a reconfiguration that yields a lower amount of contention, an
AP applies an optimization algorithm to the set of APs and STAs within its hori-

The Case for Virtualized Wireless Access Networks 99

zon, including itself. We have experimented with two optimization algorithms:
a problem-specific genetic algorithm[11] and with a greedy heuristic which we
termed “balance or conquer”.

This heuristic is inspired from previous findings that balancing of STAs be-
tween APs, where possible, leads to low contention values if there is no contention
between different BSSes. In the presence of inter-domain contention, however,
load balancing may actually be detrimental to reducing contention.

The “balance or conquer” heuristic owes its name to its repertoire of four
strategies for improving contention:

1. Try to transfer STAs to (from) other APs such that the number of STAs per
channel (not per AP!) is roughly the same within the horizon (= balance).
Change your own channel, if necessary.

2. Find another AP whose stations you can cover completely and take them all
(= conquer), effectively switching the other AP off.

3. Try transferring all stations to other APs, balancing the number of STAs
per channel, effectively switching yourself off.

4. If currently switched off, try to incrementally take over STAs (starting with
the nearest one) from other APs, as long as this does not increase contention.
Change your channel, if necessary.

During a single run of the heuristic, an AP instantiates the optimization model
with the knowledge it has collected. It then computes the change in contention
that would result from applying each of the four strategies and then greedily
picks the one with the highest presumed benefit.

5.4 Coordination of Reconfigurations

The last building block of our algorithm is concerned with the question when
APs attempt to find and propose an improved configuration. We have used both
an uncoordinated approach, in which each AP performs reconfiguration attempts
as a Poisson process. Furthermore, we have used two token-passing algorithms,
where an AP currently holding a token waits for a random time interval before
attempting to propose a reconfiguration. Whether this proposition was successful
or not, it then passes the token on to a randomly chosen neighboring AP. The
two token-based approaches differ in that the first approach starts with a single
token that circulates the network, while in the second all APs initially hold a
token. When an AP receives a new token from a neighbor while already holding
one, the new token is destroyed, so that eventually only one token remains in
the network. Lost or destroyed tokens could be replaced by letting each AP
generate a new token at a very small rate, which could vary with the amount
of contention—and therefore the necessity for a new token—within an AP’s
horizon.

The rationale behind experimenting with different reconfiguration coordina-
tion approaches is that one can expect the global level of contention in the system
to decrease more rapidly when a high number of access points concurrently tries

100 F.A. Zdarsky, I. Martinovic, and J.B. Schmitt

to find and propose reconfigurations, as is the case with the uncoordinated ap-
proach. On the other hand, when reconfigurations are made at different locations
of the network at the same time, there is a chance that the effect of one reconfig-
uration is counterproductive with respect to another reconfiguration in the long
run.

6 Experiments and Results

6.1 Performance of the Distributed Algorithm

In this section we conduct simulations to study how our distributed algorithm
compares both to standard WLAN and the optimal solution in a cooperative
scenario.

We use 10 different scenarios, each with 50 APs and 100 STAs within a 1km
by 1km simulation area. A scenario is generated as follows: In a first step, 16
of the APs are placed to regularly cover the simulation area. Afterwards, the
remaining APs are placed uniformly over the simulation area. The location of
each STA is chosen by picking an AP randomly and then placing the STA within
a distance of 10% to 90% of the transmission range of the AP, drawn from a
uniform distribution. Node transmission and reception powers as well as the path
losses are chosen as in the previous section.

As reference solution for each scenario we use the behavior of typical wireless
LAN, but under the cooperation assumption. That is, STAs associate with the
AP from which they receive the strongest signal, irrespective of the administra-
tive domain the AP belongs to. Furthermore, all APs choose an unused channel
or pick one randomly if all channels are already occupied. This reference solu-
tion also serves as the starting point for our distributed algorithm. To estimate
the optimal configuration, we use a run over 100,000 iterations of our genetic
algorithm, equivalent to roughly an hour’s worth of computation on a standard
PC.

We perform simulations both using the genetic algorithm(GA) and the balance-
or-conquer (B|C) as local reconfiguration heuristics. In order to study the effect
of concurrent reconfigurations versus sequential reconfigurations, we further use
three different reconfiguration coordination approacheswith both algorithms: Un-
coordinated reconfiguration (0 tokens), token-passing with 1 token and N initial
tokens, where N =50 (the number of access points). If no tokens are passed in the
network, the generation of reconfiguration attempts per AP is a Poisson process
with rate 1/s. If one or more tokens are present, the holding time of a token is ex-
ponentially distributed with mean 1s. Each simulation instance runs for one hour
of simulation time and is repeated for each of the ten scenarios.

The resulting average contention values (both absolute and relative decrease
compared to WLAN) and their standard errors are shown in Table 1.

Figure 2 additionally shows the development of the contention level over time
for one of the simulated scenarios. As the global GA is only (albeit a very good)
heuristic, it does not necessarily find the global minimum. As the optimization

The Case for Virtualized Wireless Access Networks 101

Table 1. Comparison of contention levels achieved by the distributed algorithm using
GA and B|C

WLAN GA Local GA Local B|C
initial tokens 0 1 N 0 1 N

mean 512.5 374.5 409.8 411.5 413.5 454.0 416.8 425.3
(0.0%) (-26.4%) (-19.8%) (-19.3%) (-18.9%) (-11.1%) (-18.2%) (-16.6%)

std. error 18.8 7.2 13.6 11.9 10.9 15.9 10.6 11.6

Fig. 2. Performance of GA (top) and B|C (bottom) as local reconfiguration algorithms
compared to global minimum and WLAN

problem is far too complex to exactly determine the true minimum, we have
additionally included the theoretical lower bound (TLB) which we derived in [11].

In our simulations, the GA version of our distributed algorithm manages to
realize on average 65.5% of the improvement potential compared to WLAN, the
B|C version 61.8%, both for the 1 token case. This corresponds to a decrease in
network-wide contention by 19.3% and 18.2%, respectively. We note that both
versions switch off a significant number of APs to achieve this result (12.2% and
13.6%, respectively), rather than balancing STAs across available APs.

102 F.A. Zdarsky, I. Martinovic, and J.B. Schmitt

Although both versions achieve comparable results, this does not mean that
both versions are equally suitable for real-world application. The computational
effort per search for a better local reconfiguration is on the order of two magni-
tudes higher for the genetic algorithm than for B|C, while only achieving slightly
better results. Furthermore, the stability of the contention levels is not the same
between the two versions as can be directly seen from Fig.2 as well.

Fig. 3. Channel change rate of GA as local reconfiguration algorithm

We also observe that the choice of the reconfiguration coordination mecha-
nism has a strong effect on the speed of the improvements in contention, but also
on the quality of the attained contention level. Using no coordination between
reconfiguration attempts of different APs leads to very quick improvements com-
pared to the 1 token approach. Interestingly, though, in almost all cases the B|C
heuristic is able to converge to lower contention levels the slower the rate of
reconfigurations. The N token case is usually somewhere in between, reacting
as the uncoordinated case when a large number of tokens is still present. Over
time it converges to the behavior of the 1 token case, as more and more tokens
are destroyed. Figure 3 shows the channel changes per second (as a total over
the whole network) for the local GA algorithm and the 0, 1, and N token cases,
which again supports the aforementioned observations.

6.2 Importance of Coordination

Finally, we would like to find out how important the local negotiation part is for
our distributed algorithm. We therefore conduct a set of experiments in which
we remove the negotiation process, so that an AP finding a better configuration
immediately commits the necessary changes instead of sending offers to all other
APs within its horizon asking for feedback. The results of one of the scenarios
are shown in Fig.4. Indeed, when an AP does not ask its neighbors for potential

The Case for Virtualized Wireless Access Networks 103

Fig. 4. Comparison of algorithm performance with and without negotiations

negative effects of a configuration change, it frequently happens that this AP re-
configures to gain a small improvement, but that this reconfiguration has strong
negative effects on the network just outside its horizon. Affected APs may in
turn attempt to improve their situation, possibly undoing the original changes.
As a consequence, contention levels fluctuate heavily and may on the average
even be higher than with plain WLAN.

7 Conclusions

In this paper we have introduced the concept of a virtualized wireless access
network, which consists of wireless access points from many different opera-
tors, including those of both commercial WISPs and private households. Virtual
wireless access networks are self-forming and self-managing, with the objective
of minimizing contention between the participating access points and stations
and of using the scarce license-exempt frequency resources as efficiently as possi-
ble. On top of this resource-efficient network, its various contributors may then
create logical networks on which they may offer services under their own brand.
We have argued why participation in a virtualized wireless access network may
be beneficial for both commercial and private contributors. Furthermore, we
have proposed a distributed algorithm and protocol allowing access points to
cooperatively manage radio resources and have shown its effectiveness.

Currently we are working on a proof-of-concept based on a set of set of LinkSys
WRT54G routers and the DD-WRT open source embedded Linux system, which
already contains many of the required features.

References

1. NYCwireless (2006) http://www.nycwireless.net.
2. Singer, M.: ’Wireless Philadelphia’ Sparks Concern (2004) http://www.

internetnews.com/wireless/article.php/3442851 (last access: 2006-02-01).

104 F.A. Zdarsky, I. Martinovic, and J.B. Schmitt

3. Akella, A., Judd, G., Seshan, S., Steenkiste, P.: Self-Management in Chaotic Wire-
less Deployments. In: 11th International Conference on Mobile Computing and
Networking (MOBICOM ’05), Cologne, Germany (2005)

4. Hardin, G.: The Tragedy of the Commons. Science 162(3859) (1968) 1243–1248
5. Ostrom, E.: Coping with Tragedies of the Commons. Annual Review of Political

Science 2 (1999) 493–535
6. Aboba, B.: Virtual Access Points. 802.11 wg document, IEEE (2003) http://www.

drizzle.com/ãboba/IEEE/11-03-154r1-I-Virtual-Access-Points.doc (last
access: 2006-02-01).

7. Amaldi, E., Capone, A., Cesana, M., Malucelli, F.: Optimizing WLAN Radio
Coverage. In: IEEE International Conference on Communications (ICC 2004),
Paris, France (2004) 180–184

8. Leung, K., Kim, B.J.: Frequency Assignment for IEEE 802.11 Wireless Networks.
In: 58th IEEE Vehicular Technology Conference (VTC 2003 Fall), IEEE (2003)
1422–1426

9. Ling, X., Yeung, K.: Joint Access Point Placement and Channel Assignment for
802.11 Wireless LANs. In: IEEE Wireless Communications and Networking Con-
ference (WCNC 2005). (2005)

10. Lee, Y., Kim, K., Choi, Y.: Optimization of AP Placement and Channel Assign-
ment in Wireless LANs. In: IEEE Conference on Local Computer Networks (LCN
2002). (2002)

11. Zdarsky, F.A., Martinovic, I., Schmitt, J.B.: On Lower Bounds for MAC Layer Con-
tention in CSMA/CA-Based Wireless Networks. In: 3rd ACM/SIGMOBILE In-
ternational Workshop on Foundations of Mobile Computing (DIALM-POMC’05),
Cologne, Germany (2005) 8–16

12. Hills, A., Friday, B.: Radio Resource Management in Wireless LANs. IEEE Com-
munications Magazine 42(10) (2004) 9–14

13. Wang, Y., Cuthbert, L., Bigham, J.: Intelligent Radio Resource Management for
IEEE 802.11 WLAN. In: IEEE Wireless Communications and Networking Confer-
ence (WCNC 2004), Atlanta, Gergia USA (2004) 1365–1370

14. WS5100 Wireless Switch Reviewer’s Guide. Product brochure, Symbol
Technologies (2005) ftp://symstore.longisland.com/Symstore/pdf/wireless/
WS5100ReviewersGuide.pdf(last access: 2006-02-01).

15. AutoCell—The Self-Organizing WLAN. White paper, Propagate Networks (2003)
http://www.propagatenet.com/resources/docs/whitepaper_autocell.pdf (last
access:2006-02-01).

16. Matsunaga, Y., Katz, R.: Inter-Domain Radio Resource Management for Wireless
LANs. In: IEEE Wireless Communications and Networking Conference (WCNC
2004), Atlanta, Georgia, USA (2004) 2183–2188

17. DD-WRT (2006) http://www.dd-wrt.org.
18. Mushroom Networks (2006) http://www.mushroomnetworks.com.
19. ITU-R P.1238-2: Propagation data and prediction methods for the planning of

radio communication systems and radio local area networks in the frequency range
of 900 MHz to 100 GHz (2001)

Job Scheduling for Maximal Throughput in
Autonomic Computing Systems

Kevin Ross1 and Nicholas Bambos2

1 UCSC School of Engineering
kross@soe.ucsc.edu

2 Stanford University School of Engineering
bambos@stanford.edu

Abstract. Autonomic computing networks manage multiple tasks over a distrib-
uted network of resources. In this paper, we view an autonomic computing system
as a network of queues, where classes of jobs/tasks are stored awaiting execution.
At each point in time, local resources are allocated according to the backlog of
waiting jobs. Service modes are selected corresponding to feasible configura-
tions of computing (processors, CPU cycles, etc.), communication (slots, chan-
nels, etc.) and storage resources (shared buffers, memory places, etc.)

We present a family of distributed algorithms which maximize the system
throughput by dynamically choosing service modes in response to observed buf-
fer backlogs. This class of policies, called projective cone scheduling algorithms,
are related to maximum pressure policies in constrained queueing networks, and
are shown to maintain stability under any arrival combination within the network
capacity. They operate without knowledge of the arrival rates and require minimal
information sharing between regions.

1 Introduction

Autonomic computing systems and networks manage several processes simultaneously
via resource sharing, which leads to multiplexing gains and economies of scale/scope.
However, it also leads to highly complex resource scheduling issues, some of which
we address in this paper. Specifically, we consider real-time scheduling of computa-
tion jobs/tasks that share infrastructure resources. Those typically include processors
or CPUs cycles, communication and/or switching (micro)channels and slots, memory
places, disk blocks, etc. Jobs arrive requiring different sets of resources,which must be
simultaneously allocated to the various waiting tasks for their execution.

At an appropriate level of modeling abstraction, one can view a computing system as
having various queues, where classes of jobs/tasks are queued up awaiting execution.
At any point in time, each region of the network can be set to one of several avail-
able service modes; each queue then receives service at a mode-dependent rate. Modes
correspond to feasible configurations of diverse processing resources, respecting var-
ious compatibility and synchronization constraints. This paper develops a framework
for dynamically configuring the infrastructure resources of an autonomic network so as
to maximize the system throughput and load balance the various queues appropriately.

While the service within each stage or region is independent in terms of service
rates, the decisions in each region influence other regions by forwarding completed or

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 105–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

106 K. Ross and N. Bambos

partially completed jobs. Therefore a coordinated allocation policy needs to be imple-
mented in order to maximize the throughput in the network. Ideally, one global sched-
uler would allocate all resources by considering the network effects, but in practice this
cannot be coordinated due to the complexity and scale of these systems. We present dis-
tributed (i.e. regional) scheduling/routing algorithms that guarantee globally maximal
throughput for general processing networks. The networks considered can be opera-
tionally partitioned into distinct network regions, where a set of infrastructure resources
are assigned/dedicated to each region. Within each region, a local scheduler allocates
the available resources, completing jobs and forwarding them to other regions or out
of the network. Each resource allocation option corresponds to a set of service rates to
the various queues. Since computer resources are very flexible, these allocations need
to encapsulate general combinations of service.

We find that the maximum possible throughput can be guaranteed throughout the
network, with minimal information sharing between different network regions. In par-
ticular, each region needs only to know the backlog its own queues and any queues it
is forwarding into. The intuition behind the algorithms presented is that they push the
maximum number of jobs from large buffers to small.

Autonomic computing systems in data centers, grid computing networks, utility
computing environments, etc. have become important technologies in recent years
[6,13,16,20,23]. However, on-line job scheduling issues and throughput limits in such
large-scale systems are not well understood. Some performance studies have led to in-
teresting scheduling research [5,8,11,12,21,22]. For the special case where completed
jobs always immediately exit the system, regional resource allocation is similar to that
in a generalized switch. In a switch, cross-connects correspond to virtual output queues
undergoing service. In that context, throughput has been widely studied, see for exam-
ple [2,4,9,14,17]. However, autonomic networks have downstream effects, where com-
pleted jobs at one server forward jobs to another queue. The potential for such localized
switching algorithms to lead to network instability was shown in [1].

The algorithms we present are based on maximum weighted-matching policies, first
proposed by Tassiulas and Ephrimedes [19]. We extend these and similar results
[3,7,10,18] by considering the distributed allocation of resources. Several techniques
have been applied for throughput analysis, for example, [3] investigates ’maximum
pressure policies’ by using fluid models rather than Lyapunov techniques. We build
upon the analysis methodology proposed in [2] and [14] that analyzed switches (single-
pass queueing networks) where, upon service, fragments immediately depart the net-
work. We extend substantially the model and analysis framework in [14].

Our focus in this paper in on the distributed decision making in such networks and
our emphasis is on autonomous regional algorithms, which have not been explored be-
fore. They promise to be useful and scale nicely to realistic large networks, because of
their distributed nature. The results here show the fundamental performance limits of
multi-stage, multi-class processor networks, and how to operate the networks in a dis-
tributed way when resources are constraining the performance. While the contribution
is primarily of a theoretical nature, the algorithms described show a lot of promise for
scalable implementation. Due to space limitations we focus on a thorough analysis of
the distributed throughput result and leave the treatment of other issues to future work.

Job Scheduling for Maximal Throughput in Autonomic Computing Systems 107

2 The Network Model and Its Dynamics

We consider an autonomic computing network as a processing system comprised of
Q interconnected first-in-first-out (FIFO) queues of infinite buffer capacity, indexed by
q ∈ Q = {1, 2, ..., Q}. The network is divided into regions, indexed by r ∈ {1, 2, ..R},
as illustrated in Figure 1. Within each region is a set of queues Qr that can be served
by the resources in region r, and another set of queues Fr which may receive jobs
forwarded from queues in Qr. The regions Qr are disjoint1 but connected in that the
queues in Fr may be part of the same or another region.

1

8

7

6

5

4

3

2

r=1

r=2

r=3

Fig. 1. Network of Queues in Regions. The network is divided into regions, with several re-
sources available in each region. Allocating resources corresponds to serving the queues in the
region at various rates. Fragments can be forwarded between queues in different regions, with
merging, splitting and feedback encapsulated in this framework. In this example, Q1 = {1, 2, 3}
is the set of queues in region 1, and F1 = {2, 4, 6, 7, 8} is the set of queues that can receive jobs
forwarded from Q1.

Time is slotted and indexed by t ∈ {0, 1, 2, 3, ...}. In each timeslot, traffic load
entering a queue may come from outside the network or be forwarded from an up-
stream queue. We use the term fragment to denote a unit of job service load in each
queue. For simplicity, we assume that each job can be ‘broken up’ arbitrarily into
fragments (or groups of fragments). Vectors are used to encode the network back-
log state, arrivals, and service in each time slot. Specifically, Xq(t) is the number of
fragments in queue q ∈ Q at time t and the overall backlog state of the network is
X(t) = (X1(t), X2(t), ..., Xq(t), ..., XQ(t)).

Requests to the autonomic network are recognized in terms of job fragments ar-
riving to individual queues. The vector of external arrivals to the network is A(t) =
(A1(t), A2(t), ..., Aq(t), ..., AQ(t)), where Aq(t) is the number of fragments arriving
to queue q at time t from outside the network (as opposed to being forwarded from
other queues). The following is assumed for each q ∈ Q

lim
t→∞

∑t−1
s=0 Aq(s)

t
= ρq ∈ [0,∞) (1)

that is, the long-term average rate of external load arriving to each queue is well-defined,
non-negative and finite. The long-term average load vector is ρ = (ρ1, ρ2, ..., ρq, ...,

1 That is, Qr1 ∩ Qr2 = ∅, for r1 �= r2, and ∪rQr = Q.

108 K. Ross and N. Bambos

ρQ), but we do not assume any particular statistics that may generate the traffic traces.
For example, arrivals can be correlated between queues or over time, and arrivals may
occur to any part of the network. In each timeslot, the number of arriving fragments
A(t) satisfies Aq(t) ≤ Amax

q for some finite value Amax
q for each q ∈ Q. When a

fragment enters a region, it is stored in its entry FIFO queue until service is applied to
it. Upon service it can either be forwarded to another queue in Fr, or it can depart the
network.

Each region has a set of resources available, which can actually be any set, but for
intuition one can think of these as some number of CPU’s. These resources can be
allocated to the queues in the region via many combinations. For example, a single
CPU could be assigned to any one of the queues, or could perhaps be shared over more
than one queue. Each potential allocation is called a mode, and we denoteMr to be all
of the modes available in region r. Since it is never advantageous to allocate resources
to empty queues, we restrict the set of modes available to be those which serve at most
the number of job units waiting in each queue.

Each mode mr ∈ Mr has a corresponding departure vector Dmr , and an entering
(feed) vector Emr . These represent the number of fragments departing and entering
each queue under mode mr. For notational simplicity we consider Q-length vectors for
Dmr and Emr , with Dmr

q = 0 for q
∈ Qr and Emr
q = 0 for q
∈ Fr.

These terms can be easily seen by considering the network in Figure 1. One of the
modes from region 1 could be the mode that forwards a single fragment from queue 1
to 2 and 4 fragments from queue 2 to queue 8. This would be represented by the vectors
Dm1 = (1, 4, 0, 0, 0, 0, 0, 0), Em1 = (0, 1, 0, 0, 0, 0, 0, 4).

While we use the language of forwarding between queues, the relationship between
Dmr

q and Emr
q can actually be arbitrary. This model allows for service at various

queues to create backlog anywhere in the network. Most previous work considers the
important special case where individual fragments are forwarded through a fixed net-
work path. However, this model allows for the cases where (i) fragments from one
queue become multiple fragments in multiple downstream queues, and (ii) fragments
from one queue creates backlog in a physically separate parts of the network. These al-
low the coordination of various network tasks, for example job completions may trigger
backup or security operations elsewhere in the network.

At each timeslot and in each region, a mode mr(t) ∈ Mr(X(t)) is selected from
the available modes. The set of available modes is assumed to be such that there are
enough fragments in each queue to complete all transfers. We make the following three
assertions on the available modes: (i) the set mr(X) of modes available in region r for
a particular backlog vector X is all of the available modes that apply service at no more
than the available backlog levels, that isMr(X) = {mr ∈ Mr : Dmr

q ≤ X, q ∈ Qr},
(ii) given one feasible mode mr, any individual fragment transfer can be canceled and
this leads to another feasible mode, and (iii) canceling departures to one queue cannot
cause more arrivals to another. If we are given a set of modes that does not satisfy
these conditions, one can complete the set of available modes by adding the modes
corresponding to canceled service.

Each queue receives service in only one region, but fragments may be forwarded
to it from several regions. Hence, the total departure rate at a given queue is the total

Job Scheduling for Maximal Throughput in Autonomic Computing Systems 109

service provided to it by the regional mode, while the effective arrival rate includes the
rate of external arrivals and the rate of forwarding from upstream queues. In this work
we focus on local mode selection algorithms, where each region independently selects
its service mode, corresponding to allocating processors to jobs.

While mode selection is regional/local, the net effect of all local decisions is a global
mode enabled at each timeslot. The mode global m(t) selected at time t is comprised
of all the regional modes. Since mode selections are potentially independent, the setM
of all possible network modes isM = {m1, m2, ..., mR : mr ∈ Mr, r = 1, 2, .., R}.
A mode m = {m1, m2, ..., mR} selected fromM is a specific set of regional modes.
That is, the mode m(t) at time t is the set of all regional mode selections at time t.

Consider the backlog change in an individual queue q, due to the service mode in its
region and any upstream regions. Note that Dm

q =
∑R

r=1 Dmr
q are the departures from

queue q under mode m. Since service to a single queue can only come from one region,
only one Dmr

q is non-zero for each q. Similarly, Em
q =

∑R
r=1 Emr

q is the total number
of fragments entering queue q from all regions under mode m. This can include several
nonzero terms, since any region may forward fragments to any other region.

For simplicity in notation, we use the vector form of all equations, omitting the sub-
script q except where necessary. Since the quantity of interest is the effective backlog
change under the selected mode, we define Sm = Dm −Em to be the backlog change
vector at time when the system is serviced under mode m. This vector is the backlog
change (positive or negative) applied to each queue in each timeslot.

Having defined carefully the terms in the backlog evolution, the vectors representing
backlog and backlog change follow the simple evolution equation:

X(t + 1) = X(t) + A(t)− S(t) (2)

where S(t) = Sm(t) = Dm(t) − E(t)m(t) is chosen by R independent mode selection
algorithms.

For simplicity, all queues are considered to be store-and-forward. Hence, current
fragment arrivals are registered at the end of the slot while fragment service and depar-
tures during the slot. Therefore, it is not allowed for any fragments to both arrive and
depart in the same slot. Moreover, we assume per-class/flow queueing in the sense that
if jobs/fragments are differentiated by class/flow they are queued up in separate (logical)
queues in the system. Such class/flow differentiation may reflect distinct paths/routes
of nodes that various jobs/fragments may need to follow through the network or diverse
service requirements they might have at the nodes, depending on the class/flow they
belong to.

3 Stability and Throughput

We seek to develop distributed resource allocation algorithms with good global perfor-
mance. In particular, we focus on maximizing the throughput of the entire network via
local/regional scheduling algorithms. An arrival load vector is feasible if there exists a
sequence of service modes to match load. The combination of regional mode-selection
algorithms is throughput-maximizing if it generates such a mode sequence for any ser-
vicable arrival rate.

110 K. Ross and N. Bambos

We utilize the concept of rate stability in our throughput analysis of the system. In
particular, we seek algorithms which ensure that the long-term fragment departure rate
from each queue is equal to the long-term arrival rate. Such algorithms must satisfy

limt→∞
t−1
s=0[Aq(s)+Eq(s)]

t = limt→∞
t−1
s=0 Dq(s)

t . Since the left hand side represents
the effective arrival rate to the queues. From the definition of change vectors, this is
equivalent to

lim
t→∞

∑t−1
s=0 Sq(s)

t
= lim

t→∞

∑t−1
s=0 Aq(s)

t
= ρq (3)

for each q ∈ Q, that is, there is fragment flow conservation through the system. The
objective of this analysis is to develop algorithms for these systems to select m(t), (and
hence S(t) = Sm(t)), in each timeslot in a way that ensures (3) will always hold; such
a system is rate stable.

Given the available regional modes, and hence the global setM of modes that can
be applied in each timeslot, we can define the maximum allowable arrival rate to the
network. Since the evolution is described in terms of change vectors, this has a nice
geometric intuition.

ρ1

ρ2

S1

S2

S3

S4S5 R

S6

Fig. 2. The stability domain. The set of allowable arrival rate vectors ρ is called the stability
domain R. For any ρ in the region R above, there is a convex combination of service modes which
would apply a total service rate to each queue which is at least the arrival rate to that queue. For
ρ outside there is no such combination. Service modes with total negative components such as
S1 and S6 above may contribute to the stability domain without being inside the stability domain
itself.

The stability domainR of the network described above is the set of all load vectors
ρ for which rate stability in (3) is maintained under at least one feasible scheduling
algorithm. The stability domain can be expressed as

R =

{
ρ ∈ �Q

+ : 0 ≤ ρ ≤
∑

m∈M
φmSm, for some φm ≥ 0 with

∑
m∈M

φm =1

}
(4)

where each m = {m1, m2, ..., mR} is comprised of R regional modes.
The intuition is that a load vector ρ is in the stability domain R if it is dominated

(covered) by a convex combination of the change vectors Sm induced under the differ-
ent modes m ∈ M (and corresponding modes mr in eachMr). This is illustrated in

Job Scheduling for Maximal Throughput in Autonomic Computing Systems 111

Figure 2. The stability domain is the intersection of the convex hull of available modes
with the positive quadrant. A similar regional stability domain could be defined, but
(4) captures all of the cross-regional relationships. If ρ /∈ R it is easily seen that rate
stability cannot be maintained for all queues under any mode-selection algorithm.

If ρ were known in advance, selecting each mode m for a fraction φm of the time (in
particular, using the corresponding regional modes for that fraction) would guarantee
maximal throughput. This could be achieved through round robin or randomized algo-
rithms. However, we are interested in dynamic scheduling algorithms which maintain
rate-stability (as in (3)) for all ρ ∈ R, without any prior knowledge of ρ. A scheduling
algorithm which ensures that (3) holds for any allowable arrival rate ρ ∈ R is referred
to as throughput maximizing.

4 Projective Cone Scheduling Algorithms

The dynamic selection of mode mr(t) in each region at each timeslot, based on queue
backlog information without knowledge of the load vector ρ, is the focus of this work.
We introduce a class of algorithms to select the regional modes based on a weighted
comparison of the total service applied to queues in the region under each mode. Lim-
ited special cases of these algorithms have previously been shown to be throughput
maximizing in switches [14], where a single region (R=1) without forwarding (Em =
0) was considered. For these algorithms, it is assumed that all of the change vectors
associated with modes are known, and the backlog state (but not arrival rate) can be
observed.

Projective Cone Scheduling (PCS) algorithms are characterized by a fixed Q × Q
positive diagonal matrix W where each element Wqq = wq > 0 is the relative weight
for queue q, and all off-diagonal elements Wpq = 0, p
= q. Given an arbitrarily fixed
Q×Q positive diagonal matrix W, the projective cone scheduling (PCS) algorithm
selects the mode mr(t) which satisfies

mr(t) = argmaxmr∈Mr(X(t)) 〈Smr ,WX(t)〉
= argmaxmr∈Mr(X(t)){

∑
q∈Qr

Xq(t)wqD
mr
q −∑

q∈Fr
Xq(t)wqE

mr
q }

(5)
If there is more than one maximizing mode, any one can be arbitrarily selected.

Notice that the selection of mr(t) is based on three values: (i) the level of backlog
the queues served and forwarded to by the region, (ii) the weighted values wq in the
matrix W, and (iii) the level of effective service applied to the queues under mode
mr. Therefore, the algorithm favors pushing the most jobs from longest queues to the
shortest queues (or out of the network) at the (weighted) highest possible rate.

Because of the distributed selection, if each region maximizes 〈Smr ,WX〉, over all
modes mr ∈ Mr(X), then in total the mode m = (m1, m2, ...mR) will also maxi-
mize 〈Sm,WX〉 =

∑R
r=1 〈Smr ,WX〉 over all combinations of modes that could be

selected.
The name PCS of this algorithm class comes from two key geometric observations.

First, the inner product formulation means that the selection of m(t) is equivalent to
maximizing the length of the projection of vector S(t) in the direction of WX(t). Sec-
ond, the cone structure of PCS algorithms was observed in [14]. Indeed, the algorithms

112 K. Ross and N. Bambos

can be described in terms of the conic spaces that each service configuration corre-
sponds to. For each mode m ∈ M, let Cm be the set of backlog vectors X for which
Sm would be chosen under the PCS algorithm, that is,

Cm =
{

X ∈ �Q
0+ : 〈Sm,WX〉 = max

m′∈M(X)

〈
Sm′

,WX
〉}

(6)

This is the set of backlog vectors on which Sm has the maximal projection amongst all
modes inM. Observe that the PCS algorithm can now be defined as follows:

when X ∈ Cm, use the service mode m (7)

The cones {Cm, m ∈ M} form a (soft) partition of the backlog space2. The par-
tition is soft since some backlog vectors lie on the boundary of more than one cone,
and whenever the backlog is on that boundary any of the ‘boundary’ modes can be se-
lected. In fact, each region is itself a cone algorithm allocating resources according to
the queues affected by that region. This corresponds to projecting the Q-dimensional
backlog space vector onto the plane with Xq = 0 for all queues outside ofQr and Fr.

When a system operates under a PCS algorithm with fixed matrix W, the evolution
can be observed through this cone structure. As the backlog changes (due to arrivals and
departures), the backlog vector X(t) moves around the cones which make up the back-
log space, using the service mode corresponding to the current cone Cm where X(t)
is located. Figure 3 illustrates the relationship between the available service modes and
the backlog cones Cm. In general, some cones may actually be degenerate (like those
corresponding to non-extremal service vectors) and several cones may share common
boundaries. The degenerate cones correspond to service modes for which there is no
backlog vector X which maximizes 〈S,WX〉 at that configuration. These would never
be selected by the PCS algorithms.

Due to the conic structure, and geometric nature of the stability proof, PCS algo-
rithms can easily be extended to delayed PCS ones. These are relaxations of the original
PCS algorithm, where the optimal service mode (according to max 〈S,WX〉) may not
be activated immediately upon the backlog entering the appropriate cone. We define a
PCS algorithm to be Delayed if for some integer K , whenever the system backlog X(t)
enters the cone Cm∗

(for any fixed mode m∗) and stays there drifting for more than K
slots, it will use m ∈ arg max 〈Sm,WX〉 from the Kth time until leaving the cone3.
It is clear that for K = 0 we have the original PCS algorithms. The delay K allows
for many interesting and practical extensions of PCS stability. For the special case of a
single switch, such extensions were studied in [14]. For example, if preemption is not
allowed in job scheduling, a delayed PCS algorithm could be implemented by forcing
modes to stay fixed until all jobs are completed.

Theorem 4.1 (Throughput Maximization of PCS Algorithms). If service modes in
the described queueing network are selected by a delayed PCS algorithm with (i) fixed,

2 That is, m∈M Cm = �Q
0+.

3 This has been carefully defined to allow for the possibility that more than one mode is maxi-
mizing for each X; it need not use exactly m∗.

Job Scheduling for Maximal Throughput in Autonomic Computing Systems 113

X2

S3

S2

S1

X1

X2
C3

C2

C1

X1

Fig. 3. PCS as a Cone Algorithm. The above graphs demonstrate the geometry of the PCS
algorithms. In this example, the system has one region and two queues with three service modes
M = {1, 2, 3}. The associated departure and entering rates are D1 = (4, 0), E1 = (0, 1), D2 =
(3, 2), E2 = (0, 0), D3 = (0, 3), E3 = (0, 0). The first graph plots the service change vectors
Sm that are available. The second graph shows how the cones Cm subdivide the workload space
when the identity matrix W = I is used. For example, if the backlog X is within the cone
C1 then service mode 1 is used. Whenever the backlog drifts into a new cone, the new service
configuration is selected.

finite delay of K timeslots, (ii) the arrival process satisfying ρ ∈ R and bounded
arrivals, (iii) the set of available service modes satisfying the three assertions on mode
availability, and (iv) fixed positive diagonal matrix W, then every queue in the network
will be rate stable. That is, PCS algorithms are throughput maximizing.

The proof is provided in appendix A, and follows a geometrically motivated method-
ology, leveraging some previous results from [14]. Some key differences from [14]
include (i) the service modes in [14] are restricted to those without forwarding or feed-
back (the corresponding service modes have Em = 0 for each m, hence Sm = Dm ≥
0), (ii) the service mode set in [14] is independent of the current state, whereas in this
work the mode set is defined by the state (idle service to an empty queue may happen
in [14] but cannot in this work), (iii) in [14], the diagonal matrix W was replaced by
a more general B matrix which allows nonpositive off diagonal elements (this class of
policies turns out not to guarantee maximal throughput in the network case described
here), and (iv) in [14], mode selection is done by a global scheduler rather than by
autonomous regions.

The intuition for the proof is that if the network is not rate stable, there must be a
subsequence of time on which the backlog is growing in some queues. Observing that
the backlog growth can be described in terms of the cones in PCS, it is shown that
unbounded growth within any of the cones is impossible, and hence the system must be
kept stable for any such policy.

Here we present a simple example to highlight some of the benefits of PCS algo-
rithms. We consider the network illustrated in Figure 4, a single region comprised of
four queues and one server. Service at rate one can be applied to any one queue in a
single timeslot. Two of the queues receive fragments from outside the network, and
can forward to either of the downstream queues. Fragments departing the downstream
queues all leave the system immediately.

We compare PCS with two simple algorithms. Randomized and round robin algo-
rithms can achieve maximum throughput if they have prior knowledge of the long term

114 K. Ross and N. Bambos

1

2

3

4
0 200 400 600 800 1000

0

5

10

15

20

25

30

35

40

45

50
Total Workload Comparison

Timeslot

W
or

kl
oa

d

PCS Algorithm
Randomized Algorithm
Round Robin Algorithm

Fig. 4. Regional Scheduling Example. The left figure shows the region on which the compar-
ison simulations were run. The network has four queues and the scheduler has to decide which
one of the four queues to serve in each timeslot. Each of the ’front’ queues can forward to either
of the ’back’ queues, and the back queues send the fragments out of the network entirely. This
region allows six different service modes. For example, the mode forwarding from queue 1 to 3
is represented by D1 = (1, 0, 0, 0), E1 = (0, 0, 1, 0), S1 = (1, 0, −1, 0).
The performance of randomized, round robin and PCS algorithms is compared in the second
figure. The total backlog over 1000 timeslots is recorded, and it is seen that the PCS algorithm
performs significantly better than the other two. The round robin performs better than the ran-
domized algorithm due to its periodic sequence of forwarding to then serving the back queues.

arrival rate vector ρ, as long as ρ ∈ R from definition 4 [15]. Both classes use the set
{φm}m∈M which satisfy (4), and assume this set can be known or calculated in ad-
vance. Therefore, by using each mode m the fraction φm of the total time, rate stability
is guaranteed.4

Randomized algorithms use the policy in every timeslot t to select mode m with
probability φm. They are very simple to implement, requiring only a coin-flip opera-
tion and no online calculation at each timeslot. Round robin algorithms use the same
principle, but with a deterministic ordering of modes instead of a randomized selection.
For some fixed batch size T , round robin algorithms use the algorithm for each m, use
mode m for φmT timeslots. If φmT is not an integer number of timeslots, then rounding
should be done in such a way to ensure that the long term average fraction of time spent
using configuration m is φm.

We compare the performance of PCS algorithms, randomized algorithms and round
robin algorithms in Fig. 4. The three algorithms were each applied to the network with
four queues and both tandem and parallel features. This comparison provides an illus-
tration of the features of each algorithm. The total backlog in the four queues is recorded
over the same sequence of arrivals under each policy. The PCS algorithms perform sig-
nificantly better than the randomized and round robin algorithms, with lower backlogs
and hence lower delays over the network. The round robin algorithms perform an inter-
mediate level between the two.

PCS algorithms have many attractive features, including the ability to naturally load
balance the network [15]. Further, the delayed-PCS algorithms account for any time-

4 In each case, if mode m is not available for X(t), the nearest available mode is chosen. For
example, if Xq < D

m(t)
q for some q, then Dm is reduced until the mode becomes available.

This corresponds to serving as many fragments as possible in each timeslot.

Job Scheduling for Maximal Throughput in Autonomic Computing Systems 115

lag in information gathering, and allow regions to act asynchronously. Due to space
limitations, we leave further discussion to future work.

5 Conclusions and Further Research

We have introduced a general methodology for modeling autonomic computing net-
works with distributed resource management. This models regional job scheduling in
generalized networks. From a performance perspective, we have shown that the class of
distributed PCS algorithms guarantee maximal throughput in these networks. They can
be implemented using very efficient local search principles even in large networks. Fur-
ther, the matrix W of implementation parameters allows a network manager to shape
the quality of service performance according to priorities. The complexity reduction
and performance control of PCS algorithms is the subject of ongoing research.

References

1. M. Andrews and L. Zhang. Achieving stability in networks of input-queued switches.
ACM/IEEE Trans. on Networking, 11(5):848–357, 2003.

2. M. Armony and N. Bambos. Queueing dynamics and maximal throughput scheduling in
switched processing systems. Queueing Systems, 44(3):209, 2003.

3. J. G. Dai and W. Lin. Maximum pressure policies in stochastic processing networks. Oper-
ations Research, 53(2):197–218, 2005.

4. J. G. Dai and P. Prabhakar. The throughput of data switches with and without speedup. IEEE
INFOCOM, pages 556–564, 2000.

5. S. Hariri. Autonomic computing: research challenges and opportunities. In IEEE Interna-
tional Conference on Pervasive Services, ICPS, 2004.

6. V. Kapoor. Services and autonomic computing: a practical approach for designing manage-
ability. In IEEE International Conference on Services Computing, volume 2, pages 41 – 48,
2005.

7. E. Leonardi, M. Mellia, M.A. Marsan, and F. Neri. On the throughput achievable by isolated
and interconnected input-queueing switches under multiclass traffic. In IEEE INFOCOM,
2002.

8. L. Mastroleon, N. Bambos, C. C. Kozyrakis, and D. Economou. Autonomic power man-
agement schemes for internet servers and data centers. In IEEE Global Telecommunications
Conference, (GLOBECOM), volume 2, pages 943–947, 2005.

9. N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100% throughput
in an input-queued switch. IEEE Transactions on Communications, 47(8):1260–1267, 1999.

10. M.J. Neely, E. Modiano, and C.E. Rohrs. Dynamic power allocation and routing for time
varying wireless networks. IEEE JSAC, 2005.

11. G. Paleologo and N. Bambos. Autonomic admission control for networked information
servers. telecommunications network design and management. Operations Research and
Computer Science Interfaces, 23:227–244, 2003.

12. A. Ranganathan and R.H. Campbell. Autonomic pervasive computing based on planning. In
International Conference on Autonomic Computing, pages 80–87, 2004.

13. J. Rolia, X. Zhu, and M. Arlitt. Resource access management for a utility hosting enterprise
applications. In IFIP/IEEE International Symposium on Integrated Network Management,
pages 549–562, 2003.

116 K. Ross and N. Bambos

14. K. Ross and N. Bambos. Local search scheduling algorithms for maximal throughput in
packet switches. In IEEE INFOCOM, 2004.

15. K. Ross and N. Bambos. Packet scheduling across networks of switches. In ICN, 2005.
16. D. Seao, A. Ali, W. Lim, N. Rafique, and M. Thottethodi. Near-optimal worst-case through-

put routing for two-dimensional mesh networks. In International Conference on Computer
Architecture, pages 432–443, 2005.

17. A. Stolyar. Maxweight scheduling in a generalized switch: State space collapse and equiva-
lent workload minimization in heavy traffic. Annals of Applied Probability, 4(1):1–53, 2004.

18. L. Tassiulas and P.P. Bhattacharya. Allocation of interdependent resources for maximal
throughput. Stochastic Models, 16(1), 1999.

19. L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions
on Automatic Control, 37(12):1936–1948, 1992.

20. B. Towles, W. J. Dally, and S. Boyd. Routing ii: Throughput-centric routing algorithm design.
In ACM Symposium on parallel algorithms and architectures, 2003.

21. W.E. Walsh, G. Tesauro, J.O. Kephart, and R. Das. Utility functions in autonomic systems.
In International Conference on Autonomic Computing, pages 70 – 77, 2004.

22. S.R. White, J.E. Hanson, I. Whalley, D.M. Chess, and J.O. Kephart. An architectural ap-
proach to autonomic computing. In International Conference on Autonomic Computing,
pages 2 – 9, 2004.

23. L. J. Zhang, H. Li, and H. Lam. Services computing; grid applications for today. IT Profes-
sional, pages 5–7, July-August 2004.

A Appendix

We present the stability proofs in this appendix. First note that from (2) we see that in
the long term

X(t + 1) = X(0) +
t−1∑
s=0

A(s)−
t−1∑
s=0

S(s) (8)

where X(0) is the vector of initial backlog levels. Further, from (8) and (3) we see that

lim
t→∞

X(t)
t

= 0 (9)

is equivalent to rate stability.

Proposition A.1 For any backlog vector X ∈ �Q
+ and any ρ ∈ R, there exists m∗ ∈

M for which 〈
Sm∗

,WX
〉
≥ 〈ρ,WX〉 (10)

for any set of service modes.

Proof:
By definition 4 of stability, ρq ≤

∑
m∈M φmSm

q for all q for some {φm}m∈M, with∑
m∈M φm = 1, φm ≥ 0. Multiplying through by [WX]q = wqXq ≥ 0, we see that

ρq[WX]q ≤
∑

m∈M φm[WX]qSm
q for all q. Now, summing over all q ∈ Q,

Job Scheduling for Maximal Throughput in Autonomic Computing Systems 117

〈ρ,WX〉 ≤
∑

m∈M
φm 〈Sm,WX〉

≤
∑

m∈M
φm max

m∗∈M

〈
Sm∗

,WX
〉

= max
m∗∈M

〈
Sm∗

,WX
〉

(11)

Further, by the three assertions of mode availability, we must have such an m∗ ∈M(X)
for large X . That is, as the backlog vector grows, the PCS-optimal mode can always be
selected.5

Now we are ready to complete the stability proof of theorem 4.1. First, note that the
backlog ’drifts’ between different cones as defined in (6).

Consider an arbitrarily fixed arrival trace A(t), t ∈ {0, 1, 2, ...} satisfying (1) with
ρ ∈ R, whereR is defined by (4). This infinite sequence of arrivals could be the result
of a deterministic or probabilistic structure, and is assumed to be fixed.

The objective of this proof is to show (9) that limt→∞
X(t)

t = 0. Since W is positive-

diagonal it suffices to show that limt→∞
〈

X(t)
t ,WX(t)

t

〉
= 0.

Arguing by contradiction, let us assume that lim supt→∞
〈

X(t)
t ,WX(t)

t

〉
> 0 and

that this limit is attained on the increasing, unbounded time sequence {ta}∞a=1 with

lim
a→∞

X(ta)
ta

= η
= 0 (12)

and the backlog blows up along the vector direction η on {ta}∞a=1. Given this assump-
tion, the contradiction is established by showing there must exist a distinct (but related)
time sequence {sb}∞b=1 which has the property

lim
b→∞

〈
X(sb)

sb
,W

X(sb)
sb

〉
> lim

a→∞

〈
X(ta)

ta
,W

X(ta)
ta

〉
= 〈η,Wη〉 (13)

But by definition, {ta}∞a=1 should achieve the superior limit, and the existence of
the sequence {sb}∞b=1 contradicts the original assertion. The series is constructed
and two key properties are identified, then it is shown how these properties lead to
the contradiction.

Constructing the sequence {sb}∞
b=1. It is instructive to consider service cones in

terms of the backlog vectors they contain. For that reason we define the cone of each
backlog vector as

C(X) = {X ′ ∈ �Q
0+ : ∃m with X ∈ Cm, X ′ ∈ Cm} (14)

5 It is important to note here that it is on this proposition that the more general projective
scheduling algorithms in [14] break down for the network case. In particular, it can not be
guaranteed that m∗ ∈ M(X) is available when the matrices W are replaced by B ma-
trices which have nonpositive off diagonal elements. One can construct scenarios in which
〈Sm,BX〉 < 〈ρ,BX〉 for all m ∈ M(X) and ρ ∈ R.

118 K. Ross and N. Bambos

to be the set of all of the backlog vectors which share a common cone to X , and could
hence be optimally operated on by the same mode.

The sequence is constructed in a similar way to in [14], with a simplification due to
allowing no idle service. Let ra = max{t < ta : X(t) /∈ C(η)} be the last time before
ta that the backlog X(t) is not included in the cone C(η). This is the last time that X(t)
crosses from outside C(η) to inside, hence, X(t) ∈ C(η) for every t ∈ [ra + 1, ta] and
the backlog drifts in C(η) throughout that interval. By convention ra = 0 if the backlog
has always been in C(η) before ta. Let sa = max{ra, (1− ε3)ta} for some ε3 ∈ (0, 1)
and for all a > 0. The second term guards against the case where the backlog eventually
remains in the same cone indefinitely.

Lemma A.1 For {sa}∞a=1 and {ta}∞a=1 as constructed above,

lim inf
a→∞

ta − sa

ta
= ε > 0 (15)

Proof: The proof follows the same argument as that presented in lemma 1.1 in [14].

Thus, sequences can always be established for which:6

I. limb→∞ ta−sa

ta
= ε ∈ (0, 1) and sa < ta for all a.

II. X(t) ∈ C(η) for all t ∈ [sa + 1, ta] and each a. This implies that the backlog X(t)
drifts within the cone surrounding η throughout the time interval [sa + 1, ta].

Given this result one can select increasing, unbounded subsequences {sb}∞b=1 and
{tb}∞b=1 of {sa}∞a=1 and {ta}∞a=1 on which the limit is equal to the inferior limit.

Establishing the Contradiction. Here the argument is established that the properties
of the constructed sequences lead to the aforementioned contradiction.

Lemma A.2 If sequences {sa}∞a=1 and {ta}∞a=1 satisfy the properties I and II above
then the superior limit is not attained on the sequence {ta}∞a=1 as initially assumed.
This establishes the required contradiction.

Proof: 7

Consider the change in backlog from time sa to time ta, that is,

X(ta)−X(sa) =
ta−1∑
t=sa

(A(t)−S(t)) =
sa+K−1∑

t=sa

(A(t)−S(t))+
ta−1∑

t=sa+K

(A(t)−S(t))

(16)
For sufficiently large sa, ta (and hence sufficiently large X(t)), we have S(t) =

Sm∗
= arg maxm∈M 〈Sm,WX〉 from time sa + K until ta where m∗ is the mode

selected by the standard PCS algorithm from all possible modes.

6 Note that in [14] an additional property is utilized. Here that property is not necessary due to
the definition of modes, and the lack of idle service potential.

7 This proof follows simpler than the stability proof in [14], due to the careful definition of
M(X).

Job Scheduling for Maximal Throughput in Autonomic Computing Systems 119

Multiplying each element in (16) by (Wη)q = wqηq , and summing over all terms
we have

〈X(ta)−X(sa),Wη〉

=
sa+K−1∑

t=sa

(A(t) − S(t)) +
ta−1∑

t=sa+K

〈A(t),Wη〉 −
〈
Sm∗

,Wη
〉

(ta − sa − 1) (17)

where m∗ ∈ arg max 〈Sm,Wη〉. The last term follows from property II since the
service configuration S∗ is used from from time sa + K until ta. Finally, observe that

lima→∞
ta−1
t=sa

A(t)
ta−sa

= ρ from property I and part of lemma 1.2 in [14]. Dividing (17)
by (ta − sa) and letting a→∞, the first term (being bounded) disappears, and we have

lim
a→∞

〈
X(ta)−X(sa)

ta − sa
,Wη

〉
= 〈ρ,Wη〉 − 〈S∗,Wη〉 = −γ(η) ≤ 0 (18)

from proposition A.1. Now, since lima→∞
X(ta)

ta
= η, using property I and (18) the

following inequality holds

lim
a→∞

〈
X(sa)

sa
,Wη

〉
= lim

a→∞

{〈
X(sa)−X(ta)

sa
,Wη

〉
+

〈
X(ta)

sa
,Wη

〉}

= lim
a→∞

{
sa − ta

sa

〈
X(ta)−X(sa)

ta − sa
,Wη

〉
+

ta
sa

〈
X(ta)

ta
,Wη

〉}

≥ ε

1− ε
γ(η) +

1
1− ε

〈η,Wη〉 > 〈η,Wη〉 (19)

The last inequality is due to the facts that ε ∈ (0, 1) and γ(η) ≥ 0. Now, successive thin-
nings of the components of the backlog vector will obtain an increasing unbounded sub-
sequence {sb}∞b=1 of {sa}∞a=1 such that limb→∞

X(sb)
sb

= ψ and from (19) 〈ψ,Wη〉 >
〈η,Wη〉. But W is positive-diagonal, so (A) implies that 〈ψ,Wψ〉 > 〈η,Wη〉 or

lim
b→∞

〈
X(sb)

sb
,W

X(sb)
sb

〉
=〈ψ,Wψ〉 > 〈η,Wη〉=lim supt→∞

〈
X(t)

t
,W

X(t)
t

〉
(20)

giving a contradiction to the definition of η. This completes the proof of Lemma A.2.

Lemma A.2, together with the construction in the previous section, completes the proof
of Theorem 4.1.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 120 – 136, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Investigating Global Behavior in Computing Grids

Kevin L. Mills and Christopher Dabrowski

National Institute of Standards and Technology
Gaithersburg, Maryland 20899 USA

{kmills, cdabrowski}@nist.gov

Abstract. We investigate effects of spoofing attacks on the scheduling and exe-
cution of basic application workflows in a moderately loaded grid computing
system using a simulation model based on standard specifications. We conduct
experiments to first subject this grid to spoofing attacks that reduce resource
availability and increase relative load. A reasonable change in client behavior is
then introduced to counter the attack, which unexpectedly causes global per-
formance degradation. To understand the resulting global behavior, we adapt
multidimensional analyses as a measurement approach for analysis of complex
information systems. We use this approach to show that the surprising perform-
ance fall-off occurs because the change in client behavior causes a rearrange-
ment of the global job execution schedule in which completion times
inadvertently increase. Finally, we argue that viewing distributed resource allo-
cation as a self-organizing process improves understanding of behavior in dis-
tributed systems such as computing grids.

1 Introduction

The Internet provides a communications infrastructure for distributed applications
with global reach and massive scale. Already, designers have specified software com-
ponents [1] that developers can use to construct and deploy computing and data grids
[2], [3]. How will such distributed systems behave? One possibility is that distributed
systems are complex adaptive systems [4] consisting of interconnected components,
where change in any component propagates to many other components through feed-
back-driven interactions over space and time. Such interactions may arise through
indirect coupling (e.g., sharing resources) exhibited as individual actors adapt their
behavior based on information gained through feedback. Complex systems often ex-
hibit the property of self-organization [4], which drives global system behavior (e.g.,
job scheduling and execution) from less organized states toward coherent patterns.
We suspect self-organization will arise with increasing frequency as distributed sys-
tems pervade the globe. Unfortunately, little is known about how to detect, predict,
and shape global behaviors in distributed systems.

Here, we study an important aspect of global behavior in grid systems, envisioned
to offer high-performance computing as a commodity for those who require substan-
tial processing cycles to design more effective drugs or engine components, to do fi-
nancial risk analyses, to model global climate, to understand our universe, and so on.
We consider distributed protocols for allocating processor resources deployed across

 Investigating Global Behavior in Computing Grids 121

a global grid. Our research shows such protocols can yield a self-organizing, global
pattern of job scheduling and execution, as various independent clients sense the state
of available processors and adapt accordingly. We investigate distributed resource al-
location in a moderately loaded grid that is subjected to an attack intended to reduce
substantially the available computing resources. We introduce a small change in client
behavior to mitigate effects of the attack, but find unexpectedly that the global pattern
of job execution degrades rather than improves. This result illustrates that surprising
global behavior can arise in a distributed system, and motivates our interest in finding
techniques to reveal, understand, and shape system behavior.

In this paper, we make three main contributions. First, we define a grid simulator
combining model components representing selected, standard specifications. We
chose specifications based on the current posture of the Global Grid Forum, which
suggests that future grid systems will be built from a combination of web services [5]
and open grid services [6]. For functions lacking completed specifications, we mod-
eled components from the Globus Toolkit 4 [7], an available grid framework that pro-
vides a significant level of capability. Our simulator allows us to model a plausible
distributed system in significant detail. Second, we show that a moderately sized grid
can exhibit unanticipated and undesirable global behavior arising from adaptive proc-
esses. We illustrate that adaptation by many individual actors can lead to self-
organization on a global scale. Third, we describe and apply a multidimensional
analysis approach to reveal underlying causes for observed global behavior. The
analysis approach is adapted from the physical sciences, where spatiotemporal analy-
ses [8] have long been a standard technique to model system dynamics. While we use
spatiotemporal analysis, we increase the number of dimensions to account for logical
partitions within the system we study. For example, we consider completion times
among various job classes over space and time (a 4D analysis). We find multidimen-
sional analyses provide more insight into system behavior than can be obtained by
summarization through averages and variances.

The remainder of the paper is organized as five sections. Section 2 outlines related
work to simulate grid systems and to investigate distributed resource allocation in
grids. Section 3 describes our analysis approach. We discuss our detailed grid simula-
tion model in Section 4, before describing our experiment design and metrics in Sec-
tion 5. Section 6 presents our simulation results, investigates causes underlying an
unexpected outcome, and describes scheduling and execution of jobs in computing
grids as a self-organizing process.

2 Related Work

While there is significant research on simulating grids, little of that work studies scal-
ability, effects of failures and attacks, or global behaviors. SimGrid [9], GridSim [10],
and MicroGrid [11] provide toolsets for simulating grid applications on large-scale
networks. These grid simulations do not combine model components representing se-
lected web services, Globus Toolkit 4 components, and open grid services. Further,
these simulators aim mainly to provide overall assessment of performance in network
protocols and middleware, rather than isolating causal behaviors that unexpectedly af-
fect global performance.

122 K.L. Mills and C. Dabrowski

Numerous researchers have investigated resource allocation in large (simulated)
grids using a decentralized approach in which clients employ independent schedulers.
For instance, Ernemann et al. [12] report results suggesting that geographically dis-
tributed grids improve overall response time. Various studies [12], [13], [14], [15]
have applied market-based economic models to optimize resource use and minimize
cost when scheduling jobs in distributed grids. Other researchers [16], [17], [18] have
investigated prioritization schemes, considering factors such as quality-of-service and
workflow requirements. Only a few grid-scheduling studies consider effects of uncer-
tainty. Krothapalli and Deshmukh [19] consider performance of alternative schedul-
ing approaches given partial information. Chen and Maheswaran [20] consider how
resource failure affects scheduling. Subramani et al. [21] attempt to identify and ad-
dress causes of unexpected performance degradations in grids. These studies rely
extensively on summary measures of performance, and provide little insight into un-
derlying global behavior. Our paper contributes to such investigations and demon-
strates an analysis approach providing insight into global system behavior and causes.

3 Analysis Approach

We conduct simulations defined by a set of parameters (e.g., space, demand, negotia-
tion strategy, and failure-response behavior) and observe system dynamics over time
with respect to various logical partitions (e.g., event type and job class). We represent
the entire system state as a multidimensional space. To investigate selected system
dynamics, we project various views of this space, using a three-step procedure: (1)
subset the space along dimensions of interest, (2) partition the subset into equivalence
classes, and then (3) transform each equivalence class into measures of interest. Sub-
sequently, we plot derived views in 2D, 3D, or 4D, depending upon the characteristics
of the equivalence classes.

We represent system state(s) as a space, U, of multidimensional points, x, i.e.,

))}.,,,,,,,,({(xxxxxxxxx oiejspadnxU == (1)

Each of the dimensions is defined in Table 1. To explain our analysis procedure, we
will derive two views used later in the paper to explore the effects of failure-response
behavior (s) on two event types: reservations created (designated E1) and task comple-
tions (designated E2).

We begin by examining the effects of failure-response behavior on reservations
created when demand (d) is 50% and the probability (p) of spoofing selected nodes is
½. We define a subspace, V1, such that

)}.5.050|{(11 EepdUxxV xx =∧=∧=∧∈= (2)

Next, we partition subspace V1 into equivalence classes, Qi, where every class consists
of points with a common time interval (i), specifically

}.|{ 1 iiVxxQ xi =∧∈= (3)

 Investigating Global Behavior in Computing Grids 123

Table 1. Definition of dimensions locating each point in system state space

Dimension Variable Range

Space n 1 < n < N, where N is the number of observation points

Demand d 10 < d < 100, where d mod 10 = 0

Negotiation
Strategy

a },...,{ 1 gAAa ∈ , where g = number of strategies

Spoofing
Probability

p 0 < p < 1

Failure-
Response
Behavior

s },...,{ 1 hSSs ∈ , where h = number of behaviors

Job Class j },...,{ 1 wJJj ∈ , where w = number of job classes

Event Type e },...,{ 1 zEEe ∈ , where z = number of event types

Time
Interval

i
1 < i < (T / I), where T is simulation run time and I is

 the observation interval size and i = t/I for t = current
 simulation time

Observation o integer

Subsequently, we map portions of each equivalence class to a specific value by de-

fining operators, Gs(i), where

.)(

=
∈

=
ss

Qx
xs

x

i

oiG
(4)

This yields a 2D view, where one dimension represents a particular failure-response
behavior (s) and the other dimension denotes specific time intervals (i) and each cell
(s, i) contains an aggregate count of reservations created, obtained from equation 4.
As discussed later, plotting such views for different s reveals large differences in the
pattern of reservations created over time. To investigate such differences in more de-
tail, we define a new view of the system state space to consider the evolution of task
completion times for particular job classes (j).

We begin by defining the subspace, V2, of interest:

))},()(5.050|{(212122 JjJjSsSsEepdUxxV xxxxxxx =∨=∧=∨=∧=∧=∧=∧∈= (5)

and then a relation, R, to form equivalence classes on V2:

),(yxyx jjssyRx =∧=⇔ (6)

where .2Vy ∈ Here, }{2 kQRV = forms (k = 1, 2, 3, 4) equivalence classes, each

combining one of two selected failure-response behaviors with one of two selected
job classes. Next, we define a scaling factor, f, derived from the maximum observa-
tion in subspace V2:

124 K.L. Mills and C. Dabrowski

,1)|max(2 +∈= Vxof x (7)

and then we define the following operators:

.)1(1)(fkxxG o
kQx

k ×−++=
∈

 (8)

4 Simulation Model

We find that simulation provides an excellent vehicle to investigate global behavior,
for several reasons. First, simulation models allow construction of systems of large
scale, which can be expensive to achieve in a test bed. Second, simulation models al-
low complete access to system state, which is impractical in a large deployed system.
Third, simulation models provide rigorously controllable and repeatable conditions,
which are difficult to ensure in a test bed of significant size. Fourth, simulation mod-
els allow incorporation of various levels of abstraction, while deployed systems typi-
cally include incidental complexity that is impractical to remove. Prior to conducting
experiments, we verified our model for correct operation through extensive trials, re-
moving several biases and errors in the process. In our experiment we used our model
for qualitative analysis of system dynamics, rather then to make quantitative perform-
ance predictions; therefore, our verification process focused on ensuring correct inter-
pretation of the standard specifications we modeled, rather than validating the model
against measured performance data. In this section, we describe our simulation model,
concentrating on the grid computing aspects.

4.1 Network and Web Services Model

We define a topology of sites, each located at a point (x, y, z). The x-y coordinates lo-
cate a site in the Internet and the z coordinate defines the distance in router hops from
the site to the Internet. The model uses differences in x-y coordinates to compute
Euclidean distances among sites, and then converts those distances to Internet router
hops by assuming that routers are separated by a specified distance. The distance in
hops between two sites is defined by the distance between the sites in Internet router
hops plus the number of z-coordinate hops required for each site to reach the Internet.
Messages flowing between sites are delayed in proportion to distance in hops. Mes-
sages flowing within sites incur simulated local-network transmission delays. Nodes
are defined and allocated to sites. Each node has a mailbox, which simulates a sockets
interface and related transport protocols, including multicast. Each node simulates
CPU-execution time required by processes executing on the node. Nodes also include
a standard set of services modeled after web services for messaging [22], addressing
[23], and stateful resources [1]. At selected sites, our model deploys simulated infor-
mation and index servers, which we model as service groups. We also define a two
level hierarchy of index servers, linked together through simulated query aggregators

 Investigating Global Behavior in Computing Grids 125

Scheduler

Task
Control

Negotiation
Control

Grid Processor

Service
Negotiator Agreement

Grid ProcessorGrid Processor

Service
Instance

Service
Negotiator

Agreement

Execution
Control

CLIENT

Application

Client
Negotiator

Task 1

Discovery
Control

Task 2

Grid Processor

Service
Negotiator

Agreement

Client
Negotiator

Task 3

Task
Control

Negotiation
Control

Application
Task 1

Discovery
Control

Task 2

Scheduler

Job
Manager

Job
Manager

Job
Manager

Job
Manager

spawnsspawns

negotiates
negotiates

monitors

monitors

requests
reservation

spawns

Supervisory Process Supervisory Process

spawns

Information
Server

Index
Server

Information
Server

Index
Server

Index
Server

Service
Factory

Service
Instance

Service
Factory

Service
Instance

Scheduler

Task
Control

Negotiation
Control

Grid Processor

Service
Negotiator Agreement

Grid ProcessorGrid Processor

Service
Instance
Service
Instance

Service
Negotiator

Agreement

Execution
Control

CLIENT

Application

Client
Negotiator

Task 1

Discovery
Control

Task 2

Grid Processor

Service
Negotiator

Agreement

Client
Negotiator

Task 3

Task
Control

Negotiation
Control

Application
Task 1

Discovery
Control

Task 2

Scheduler

Job
Manager

Job
Manager

Job
Manager

Job
Manager

spawnsspawns

negotiates
negotiates

monitors

monitors

requests
reservation

spawns

Supervisory Process Supervisory Process

spawns

Information
Server
Information
Server

Index
Server
Index
Server

Information
Server
Information
Server

Index
Server
Index
Server

Index
Server
Index
Server

Service
Factory
Service
Factory

Service
Instance
Service
Instance

Service
Factory
Service
Factory

Service
Instance
Service
Instance

Fig. 1. Snapshot of system execution: client spawns supervisory processes for two applications

(modeled after the index service of Globus Toolkit 4) to form a monitoring and dis-
covery service that grid clients use to discover the nature and location of available re-
sources.

4.2 Grid Computing Model

At the application level, we model two main components, service providers and cli-
ents, found in well-known grid models (e.g., [2]). Service providers control availabil-
ity of grid resources. Grid clients discover resources and enter into agreements for
their use to execute client jobs. We describe these components and the procedures for
reaching agreements and executing jobs. Figure 1 provides a simplified view of the
model.

Service Providers. We designate selected sites as service-provider sites, where we
deploy grid services, service factories, and schedulers. We model grid services in two
parts: (1) application code, which executes jobs provided by clients; and (2) grid
processors, which provide platforms upon which application code executes. Grid
processors may be either clusters or vector computers, both capable of parallel execu-
tion. Each grid processor implements a simulated job manager (modeled after the Dis-
tributed Resource Management System [28]) that responds to job requests by locating
and loading appropriate application code and obtaining input files from the requesting
client. The job is then queued until its start time.

Each grid service has a service description, whose attributes include: type of appli-
cation code (or task type) and descriptions of available grid processors on which the
application code may run. Each grid processor description identifies processor type

126 K.L. Mills and C. Dabrowski

(pType: cluster or vector), available parallelism (or pFactor), and processor speed
(pSpeed in cycles/second). A service factory manages each service description.

To advertise service availability, a service factory registers the service description
with a local information server. Remote clients discover service descriptions through
an indexing server and then contact an associated service factory to enter into agree-
ments for services. For each client request, a service factory spawns a transient entity
called a service instance, which provides a service negotiator to negotiate a service
agreement locally on behalf of a remote client. The service instance contains an
agreement document [29] and maintains negotiation status. If an agreement is
reached, the service instance launches an execution controller to act as local proxy on
behalf of the remote client. The execution controller submits jobs and status requests
and reports job status to the client. We model each service instance (containing ser-
vice negotiator, agreement, and execution controller) as a single container with life-
time determined by the negotiation duration or, if successful, by job length.

Each service-provider site contains a scheduler that controls reservation of CPU
time on all grid processors within the site. For a client to obtain an agreement, a ser-
vice negotiator must first reserve (through the site scheduler) time on an appropriate
processor component. Each site scheduler is independent of other schedulers and ac-
cepts reservations on a first-come, first-serve basis with backfilling. All clients are
given equal priority. As a policy, each scheduler attempts to allocate tasks with
smaller pFactors to smaller clusters, thus saving large grid clusters for tasks requiring
greater parallelism.

Grid Clients and Applications. We model each grid client as a set of independent
applications, each with one or more tasks. While tasks in an application must execute
sequentially in a workflow, each task contains subtasks that may execute in parallel.
Each task is described by: task type (application code), pFactor (number of parallel
processors required for subtasks), pType (cluster or vector), and pCycles (CPU cycles
needed to run the task). The task duration, tDuration, may be computed as:

)(pSpeedpFactortCyclestDuration ×= (9)

Clients create separate supervisory processes for each application. For each appli-
cation task, the supervisor initiates service discovery, followed by negotiation to ob-
tain an agreement to execute the task on a processor, and then monitors execution
through a service instance. Since tasks are sequenced within an application, negotia-
tion for a task is triggered when the previous task finishes. An application is complete
when its last task finishes, at which time the supervisory process terminates.

We model supervisors as multiple components for: service discovery, agreement
negotiation, and execution monitoring (including fault detection and recovery and job
rescheduling). The discovery component activates on task completion to find the next
task requiring services, and first queries a local index server for references to any re-
mote information server with service descriptions matching task requirements. For
each reference retrieved, the discovery component queries the associated information
server to obtain matching service descriptions, which are then cached locally for use
by the negotiation component. The negotiation component identifies the next incom-
plete task having no service agreement, ranks and selects cached discoveries for a

 Investigating Global Behavior in Computing Grids 127

task, and then creates a client negotiator for each selection. Selection criteria give
higher priority to more recent discoveries and those that have not been tried
previously. Similar to Condor-G [3], the negotiation component prioritizes discover-
ies during subsequent negotiations (as described below) to favor those that can exe-
cute the task sooner. If negotiation produces a successful agreement, a monitoring
component registers with the service instance for notification of the outcome and ac-
companying output.

Agreement Negotiation. Negotiation commences when a client negotiator is cre-
ated to obtain an agreement for a specific task. The negotiator, provided with a ser-
vice description and the address of a service factory, queries the factory to obtain an
agreement template, containing a set of possible agreement terms and, optionally, a
list of creation constraints. We use creation constraints to convey existing reservations
for grid processors associated with a service factory. Client negotiators use this in-
formation to determine an earliest possible start time. Execution ceases for any client
negotiator obtaining an unacceptably late start time; otherwise, each client negotiator
instantiates an agreement template for a selected task and end time on a subset of
available processors, and then forwards the template (as an agreement offer) to a ser-
vice factory, which spawns a service negotiator.

Our model allows negotiation to proceed according to one of two strategies: single-
reservation request (SRR) or multiple-reservation request (MRR). In SRR, which
closely follows WS Agreement [29], the service negotiator immediately acknowl-
edges the client’s request and contacts the scheduler to obtain a reservation,
requesting start and end times on the processors specified in the agreement offer. If a
reservation is granted, the service negotiator forwards an acceptance to the client;
otherwise, the negotiator forwards a rejection (which can occur because multiple ap-
plications may be competing for the same processors). In SRR, an offer is considered
obligating; thus, acceptance instantiates an agreement that both parties must observe.
Independent of outcome, the negotiation terminates.

Negotiation Feedback. In MRR, negotiation may continue after initial rejection.
MRR rejections contain an updated reservation list for applicable processors. A client
negotiator may use this feedback to compose a “follow-up” offer to the service nego-
tiator. This process may repeat, with additional follow-up offers, until an agreement is
reached or negotiation is terminated. In contrast, SRR requires restarting negotiation
to retrieve the template with the updated reservation list to use this feedback in pre-
paring a new offer. The MRR strategy also differs from the SRR strategy in that client
offers are not obligating. Using MRR, a client may create multiple client negotiators
to simultaneously negotiate agreements for the same task and then accept the best
one. The client may replace an existing observed agreement with a new agreement, if
obtained prior to task execution. This again contrasts with the SRR strategy, where of-
fers from client negotiators must be sequenced to prevent concurrent observed agree-
ments. Each client was configured to negotiate with either MRR or SRR, while ser-
vice negotiators handled both strategies. Both SRR and MRR adapt to feedback, as is
characteristic of actors in self-organizing systems [4]. As we show in Sections 6.2 and
6.3, repeated attempts to secure services through negotiation lead to interactions
where adaptation to feedback drives global resource allocation.

128 K.L. Mills and C. Dabrowski

5 Experiment Description

We deployed our model in a simulated grid and conducted an experiment to compare
the effectiveness and overhead of SRR and MRR. Below, we describe the experiment
topologies, workload and design, and then define the metrics of comparison.

5.1 Experiment Topologies and Workload

In each experiment repetition, we generated a random topology by varying (uniformly
between -4,000 and 4,000) the x-y coordinates (z = 2) of each site, which limited
maximum inter-site distance to 16 hops. Each topology consisted of 42 sites: 30 ser-
vice sites and 12 client sites. Each client site provided 25 applications for a total of
300 applications comprising 600 tasks. Each service site hosted a variable number of
grid processors (allocation shown in Table 2) and one service factory to register ser-
vice descriptions with a site-local information server. Service factories dynamically
create service instances in response to client offers–one instance per client negotiator.
Each service site contained one scheduler, and also contained a local information
server and index server, which itself was subordinate to 12 index servers, one at each
client site.

Table 2. Resources at Service Sites

Site Type Processors at Site Number of Sites
1 (1) 500-processor cluster 12
2 (2) 500-processor cluster 6

3
(1) 500-processor cluster
(2) 1000-processor vector

6

4
(2) 500-processor cluster
(1) 5000-processor cluster

6

Table 3. Description of Task Types

Task Type pType pFactor pCycles
T1 Cluster 500 2.25e6
T2 Vector 1000 1.005e7
T3 Cluster 5000 2.50e7

Table 4. Description of Application Types

Application Type Number, Type and Sequencing of Tasks
A1 and A2 (2) of task T1, executed sequentially

A3 (3) of task T1, executed sequentailly
A4 (1) of task T1 followed by (1) of task T3
A5 (1) of task T2

With no comprehensive studies of grid workflows to rely on, we chose relatively
basic workflows in order to provide a simple baseline for analysis. We simulated

 Investigating Global Behavior in Computing Grids 129

applications consisting of one to three compute-intensive, parallelized tasks (each re-
quiring between 500 and 5000 processors). We selected task types (Table 3) with
execution times (average 1.38 hours/task) on the same order as observed in selected
processor workload trace studies [30], [31]. Task definitions were combined to form
application workflows of five types (Table 4).

We chose to experiment with a grid under moderate (50%) workload so that at-
tacks would generate stress. Our attack model would not stress a lightly loaded grid,
while a heavily loaded grid would already be operating under stress. We required
each client site to have 25 applications (five instances of each application type), and
calibrated simulated processor speeds to ensure these 300 applications consumed 50%
of the capacity shown in Table 2. We activated service providers and applications af-
ter a random initial delay. Applications started after a further random delay (up to 2
hours) to simulate start of a workday. We assumed users requiring applications to
complete within a 100,000 s deadline (just over one day), but allowed up to 200,000 s
for applications to complete in order to measure the extent to which applications ex-
ceeded the deadline.

5.2 Experiment Design and Metrics

Initially, we considered effects on system performance of an attack carried out
through spoofing by authorized but malicious service providers. Spoofing occurs
when a bogus service factory at a miscreant site returns a faked template showing all
the site’s grid processors without reservations, leading a client negotiator to assume
its task can be run immediately. This causes client negotiators to submit offers to the
bogus service factory, which makes no further response, thus denying service to the
client. Consequently, spoofed client negotiators time out (after 30 s) and terminate.
Spoofing causes clients to lose time pursuing bogus resources, delaying application
completion. We were interested to see how our simulated grid responded to this
threat, and especially to discern performance differences between the two negotiation
strategies. To assist clients, we defined an adaptive failure-response behavior in
which clients react to negative feedback – service factories that caused timeouts were
not retried for 5000 s, and after three consecutive timeouts a service factory was not
retried for a specific task.

We configured our clients so that half negotiated under SRR and half under MRR.
We subjected this configuration to three scenarios: (1) normal conditions (50% work-
load, no spoofing), (2) spoofing without failure response, and (c) spoofing with failure
response. For each scenario, we executed repetitions of a simulated workday. Spoof-
ing sites, chosen randomly with probability ½, remained so for the duration of a repe-
tition. On average, 15 of 30 sites were spoofing in any repetition, eliminating half the
system capacity and driving workload to 100%. Both spoofing scenarios were sub-
jected to an identical sequence of 545 randomly generated topologies.

We measured two main aspects of system performance: application completion
time (Tc) and overhead. We recorded frequency distributions (interval 10,000 s) for
Tc across all topologies for each combination of scenario and negotiation strategy,
and used those distributions to compute probability density functions (PDFs). For

130 K.L. Mills and C. Dabrowski

applications completing by goal Tg (= 100,000s), we computed average application
duration, ,appD as a proportion of Tg:

[]

,

1
/)/)((−

=
=

≤

appN

i
appgidc

D NTTT
gC TT

app

(10)

where Td denotes time the discovery process commenced for application i, Tc is com-
pletion time for application i, and Napp is number of applications (with Tc < Tg) in the
experiment. We denote the average application duration across all repetitions
as .appD We also computed P(Tc < Tg), probability an application completes by Tg.

We measured overhead based on messages transmitted to complete negotiation.
(Note that in these experiments we allowed up to five active client negotiators for
each application task.) We defined as the minimum number of messages, Xngt = 25,
the expected minimum when five client negotiators activate simultaneously for a task
using the SRR negotiation strategy. We computed the average Ongt for a task as

[] ,//)(
1

task

N

i
ngtingtngt NXMO

task

=

= (11)

where Mngt is the number of negotiation messages counted to obtain agreements for
task i and Ntask is the number of tasks.

ngtO denotes
ngtO averaged over all repetitions.

6 Results and Discussion

Table 5 summarizes system performance. Spoofing caused application duration to in-
crease by 30% and P(Tc < Tg) to fall by 15%. Spoofing also caused negotiation over-
head to increase fifteen times. However, incorporating adaptive failure response to
combat spoofing decreased this overhead by about 50%, due to fewer interactions
with spoofing sites. Unexpectedly, though, incorporating failure response caused an
increase in application duration and a decrease in the probability of completing appli-
cations by Tg. This surprising result is supported by the probability density functions
(PDFs) for application-completion times, plotted in Figure 2 for three scenarios: (a)
no spoofing, (b) spoofing without failure response, and (c) spoofing with failure re-
sponse. As expected, a large number of applications completed later when spoofing
occurred, as client negotiators lost time making offers to bogus sites before eventually
reaching legitimate sites. Unexpectedly, adaptive failure response led to a distinct
right-shift in the PDF, as more applications completed later. This puzzling result re-
quired further investigation. To understand and explain the unexpected outcome, we
identified topologies that exhibited the greatest performance degradation when using
adaptive failure response. Then we selected one of those topologies for multidimen-
sional analyses, using the approach outlined earlier in Section 3.

 Investigating Global Behavior in Computing Grids 131

Table 5. Summary of system performance

6.1 Multidiminsional Analysis

Let failure-response behavior be },{ FRNoFRs ∈ , where NoFR signifies no failure

response and FR signifies failure response, and let event types of interest be
},{ TCRCe∈ , where RC denotes reservations created and TC denotes tasks com-

pleted. We first examined effects of s on RC, instantiating subspace V1 (equation 2) by
choosing ex=RC. We defined equivalence classes using equation 3, selecting observa-
tion interval I=1,000 s (the smallest granularity we could plot conveniently) over
T=200,000 s to yield 200 equivalence classes 1 < i < 200, summed across failure-
response behavior s and job class j. Each equivalence class was then restricted to s =
FR or s = NoFR and aggregated (equation 4) to generate two time series, as shown in
Figure 3, revealing two different patterns of reservation creation. Most notably,
Figure 3 shows, at i = 100 (t = 100,000 s), a large spike in reservations created ap-
peared when failure response was employed. Figure 3 also shows that over the inter-
val 1 < i < 50 more reservations were created when failure response was used – while
for the interval 51 < i < 100, no reservations were created when failure response was
used. These large shifts in the pattern of reservation creation suggested to us that the
schedule of job executions was being altered.

To examine this at finer resolution, we defined additional subspaces to consider
task completions (ex=TC) under two negotiation strategies },{ MRRSRRa ∈ for par-

ticular job classes }33,23,13,21,11{ TATATATATAj ∈ chosen by selecting task types

from Table 3 comprising application types A1 and A3 from Table 4. Using the ap-
proach shown in equation 5, we defined a subspace, V2, to to consider the tasks for
application A1. We then defined a relation, R1, (similar to equation 6) to form eight
equivalence classes {Qk}, k = 1 …8, on V2, with each partition representing a combi-
nation of failure-response behavior (s), job class (j), and negotiation strategy (a). Us-
ing equation 7, we determined a scaling factor, f, and operators as defined in equation
8 for each partition. Applying these operators yielded eight time series, shown in Fig-
ure 4 (a) and (b). Similarly, we defined another subspace, V3, to which we applied R1

to form 12 equivalence classes. We then determined a scaling factor and operators to
yield 12 time series, shown in Figure 4 (c) and (d).

Application Duration

.appD P(Tc < Tg)
Negotiation Overhead

ngtO

Total SRR MRR Total SRR MRR Total SRR MRR
No
Spoofing

0.355 0.363 0.348 1.000 1.000 1.000 2.02 1.15 2.89

Spoofing
without
failure
response

0.660 0.728 0.526 0.845 0.728 0.963 30.74 40.09 22.05

Spoofing
with failure
response

0.712 0.816 0.612 0.800 0.711 0.890 17.46 18.90 16.11

132 K.L. Mills and C. Dabrowski

0.00

0.10

0.20

0.30

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

16
00

00

17
00

00

18
00

00

19
00

00

20
00

00

>20
00

00

Time

P
ro

b
ab

ili
ty

(a) No Spoofing

(b) Spoofing without Failure Response

(c) Spoofing with Failure Response

0.00

0.10

0.20

0.30

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

80
00

0

90
00

0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

16
00

00

17
00

00

18
00

00

19
00

00

20
00

00

>20
00

00

Time

P
ro

b
ab

ili
ty

(a) No Spoofing

(b) Spoofing without Failure Response

(c) Spoofing with Failure Response

Fig. 2. Comparative PDFs for Application-Completion Times given: (a) No Spoofing, (b)
Spoofing without Failure Response, and (c) Spoofing with Failure Response

0

50

100

150

200

250

300

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

Time

A
m

p
lit

u
d

e

Without Failure Response

With Failure Response

0

50

100

150

200

250

300

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

Time

A
m

p
lit

u
d

e

Without Failure Response

With Failure Response

Fig. 3. Two Time Series: (a) Reservations Created without Failure Response and (b) Reserva-
tions Created with Failure Response

The 20 time series shown in Figure 4 reveal shifts in the temporal evolution of job
completions. Specifically, when failure response was employed for clients using SRR,
initial tasks for both applications (A1T1 and A3T1) scheduled and completed earlier
than when failure response was not used, while their second tasks (A1T2 and A3T2)
completed in roughly the same time range irrespective of failure-response behavior.
Third tasks (A3T3) for clients using SRR were completed later when failure response
was used. Employing adaptive failure response helped clients using SRR become

 Investigating Global Behavior in Computing Grids 133

more competitive in obtaining reservations earlier in time. As Figures 4(b) and 4(d)
show, this led clients using MRR to have more difficulty obtaining early reservations
for second (e.g., A1T2 and A3T2) and third (A3T3) tasks within an application. Thus,
while the initial tasks for clients using MRR completed within the same time range
regardless of whether adaptive failure response was used, second and third tasks were
delayed when failure response was activated.

Time

A
m

p
lit

u
d

es

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

p
lit

u
d

es

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

Time

A
m

p
lit

u
d

es

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

p
lit

u
d

es

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

p
lit

u
d

es

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

p
lit

u
de

s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3 T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

p
lit

u
de

s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3 T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

p
lit

u
d

es

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3 T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR

A3 T3A3T3 time shift

Time

A
m

p
lit

u
d

es

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3 T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR

A3 T3A3T3 time shift

Time

A
m

p
lit

u
d

es

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

p
lit

u
d

es

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

Time

A
m

p
lit

u
d

es

(a) Task-Completion Count for A1 Initiated by Clients using SRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T1 time shift

SRR Clients

Time

A
m

p
lit

u
d

es

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

p
lit

u
d

es

(b) Task-Completion Count for A1 Initiated by Clients using MRR

A1T2

NoFR

FR

NoFR

FR

A1T1

A1T2 time shift

MRR Clients

Time

A
m

p
lit

u
de

s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3 T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

p
lit

u
de

s

(c) Task-Completion Count for A3 Initiated by Clients using SRR

NoFR

FR

NoFR

FR

A3 T1
A3T1 time shift

SRR Clients A3 T2

FR

NoFR
A3 T3

A3T3 time shift

Time

A
m

p
lit

u
d

es

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3 T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR

A3 T3A3T3 time shift

Time

A
m

p
lit

u
d

es

(d) Task-Completion Count for A3 Initiated by Clients using MRR

NoFR

FR

NoFR

FR

A3 T1

A3T2 time shift
MRR Clients A3 T2

FR

NoFR

A3 T3A3T3 time shift

Fig. 4. Time Series of the Count of Task Completions Showing Time Shifts in the Execution
Schedule When Adaptive Failure Response is used to Combat Spoofing Attack

6.2 Self-organization and Adaptive Failure Response

This result demonstrates that taking a seemingly sensible action, here having clients
resist spoofing, can lead to unanticipated system-wide performance degradation. In
our example, introducing the adaptive failure response feedback mechanism (recall
sec. 5.2) helped clients using SRR negotiation to become more competitive. This led
to an unintentional reordering in the global schedule so that many second and third
tasks executed later, and completion of jobs was delayed for most clients. This reor-
dering arises from a self-organizing process in which numerous feedback-driven in-
teractions among independent actors during negotiation form the global schedule.
Multidimensional analysis allowed us to observe and explain this phenomenon.

We explored this behavior under several different conditions, as described in detail
elsewhere [32]. First, we altered the scheduling algorithm to permit applications to re-
serve resources early (optimistically) for all tasks, rather than waiting until a previous

134 K.L. Mills and C. Dabrowski

task completed before seeking resources for the next task. Here, spoofing again
caused performance degradation. Use of adaptive failure response caused further de-
cline, with SRR clients benefiting at the expense of MRR clients. Multidimensional
analysis of task completions revealed that when failure response was used, the global
job execution schedule was again reordered so that second and third tasks executed
later. Next, we introduced a different mix of applications and tasks, maintaining the
basic workflow. Again, spoofing caused performance to degrade substantially, while
use of failure response caused a slight degradation in which SRR clients benefited
while MRR clients suffered. Multidimensional analysis of task completions revealed a
similar task-reordering phenomenon to that observed with the original job mix. Fi-
nally, we defined a workload where every application consisted of only a single task,
thus removing task dependencies in multi-task applications. While spoofing again
increased application completion times, the introduction of failure response had little
effect on the relative performance of MRR and SRR clients. Nevertheless, multidi-
mensional analysis of task completions revealed underlying shifts in completion
times, albeit in muted form. Thus, under the various conditions we examined, adap-
tive failure response either further degraded or failed to improve application-
completion times, and a comparable reordering of job completions was observed in
each case.

7 Conclusions

Scheduling and execution of jobs in a grid can exhibit a self-organizing behavior aris-
ing from distributed resource-allocation protocols. In the cases we studied, this self-
organizing behavior leads to unexpected increase in application-completion times
when adaptive failure response is used to combat a spoofing attack. Without tools
such as multi-dimensional analysis to explore global behavior, much time and ex-
pense might be wasted attempting to identify and explain causes of this unexpected
system performance. We believe that the key to understanding and controlling large,
distributed systems is to view processes, such as distributed-resource allocation, as
self-organizing. Doing so could provide a basis for creating measurement techniques
and control algorithms to manage distributed systems of scale and complexity. Oth-
erwise, with inadequate analytic tools, unanticipated consequences of underlying self-
organizing processes will likely hamper adoption of promising technologies, such as
grid computing.

In this paper, we explored a limited model of a computing grid that uses simple
processes to allocate distributed resources among applications with basic workflows.
Numerous researchers have proposed more complex regimes (such as market-based
approaches) for distributed resource allocation, and we expect future proposed grid
standards to include more nuanced algorithms, which may lead to other unexpected
global behaviors caused by underlying self-organizing processes. Given this, we plan
to explore behaviors that might arise if more sophisticated approaches are deployed.
Subsequently, we will investigate techniques for influencing global behaviors in dis-
tributed systems.

 Investigating Global Behavior in Computing Grids 135

References

1. The WS Resource Framework, V1.0. Computer Associates International, Inc., Fujitsu
Limited, Hewlett-Packard Development Company, International Business Machines Cor-
poration and The University of Chicago (2004)

2. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid, An Open Grid
Services Architecture for Distributed Systems Integration. Global Grid Forum (June 2002)

3. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor-G: A Computation
Management Agent for Multi-Institutional Grids. Proceedings of the Tenth IEEE Interna-
tional Symposium on High Performance Distributed Computing. San Francisco (August 7-
9, 2001) 55-67

4. Holbrook, M.B.: Adventures in Complexity: An Essay on Dynamic Open Complex Adap-
tive Systems, Butterfly Effects, Self-Organizing Order, Coevolution, the Ecological Per-
spective, Fitness Landscapes, Market Spaces, Emergent Beauty at the Edge of Chaos, and
All That Jazz. Academy of Marketing Science Review (2003)

5. Web Services Architecture. W3C Working Group Note (February 11, 2004)
6. The Open Grid Services Architecture, Version 1.5. Global Grid Forum (March 10, 2006)
7. I. Foster et al.: A Globus Primer or, Everything You Wanted To Know About Globus But

Were Afraid to Ask, an Early and Incomplete Draft (May 8, 2005)
8. Bak, P.: How Nature Works: the science of self-organized criticality. Copernicus, New

York (1996)
9. Legrand, A., Marchal, L., Casanova, H.: Scheduling Distributed Applications: The Sim-

Grid Simulation Framework. Proceedings of the third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid'03). Tokyo (May 12-15, 2003) 138-145

10. Buyya, R. Murshed, M.: GridSim: a toolkit for the modeling and simulation of distributed
resource management and scheduling for Grid Computing. Concurrency and Computation:
Practice and Experience. Vol. 14. (2002) 1175-1220

11. Liu, X., Xia, H., Chien, A.: Validating and Scaling the MicroGrid: A Scientific Instrument
for Grid Dynamics. Journal of Grid Computing. Vol. 2, No. 2 (2004) 141–161

12. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of Global Grid Computing for Job
Scheduling. Proceedings of the Fifth IEEE International Workshop on Grid Computing
(GRID 2004). Pittsburgh. (November 8, 2004) 374-379.

13. Wolski, R., Brevik, J., Plank, J., Bryan, T.: Grid Resource Allocation and Control Using
Computational Economies. In Berman, F, Fox, G., Hey, T. (eds.): Grid Computing: Mak-
ing the Global Infrastructure a Reality. Wiley and Sons, New York. (2003) 747–772

14. Gomoluch, J., Schroeder, M.: Market-based Resource Allocation for Grid Computing: A
Model and Simulation. Proceedings of the First International Workshop on Middleware
for Grid Computing. Rio de Janeiro. (June 16-20, 2003) 211-218

15. Yeo, C.S., Buyya, R.: Service Level Agreement based Allocation of Cluster Resources:
Handling Penalty to Enhance Utility. Proceedings of the 7th IEEE International Confer-
ence on Cluster Computing. Boston. (September 27-30, 2005)

16. In, J., Avery, P., Cavanaugh, R., Ranka, S.: Policy Based Scheduling for Simple Quality of
Service in Grid Computing. Proceedings of the Eighteenth International Parallel and Dis-
tributed Processing Symposium (IPDPS'04). Santa Fe. (April 26-30, 2004) 23

17. He, X., Sun, X., Von Laszewski, G.: A QoS Guided Scheduling Algorithm for Grid Com-
putting. Journal of Computer Science and Technology, Special Issue on Grid Computing.
Vol. 18, No. 4 (2003) 442-450

136 K.L. Mills and C. Dabrowski

18. Cooper, K., et al.: New Grid Scheduling and Rescheduling Methods in the GrADS Project.
Proceedings of the Eighteenth International Parallel and Distributed Processing Sympo-
sium (IPDPS'04). Santa Fe. (April 26-30, 2004) 199

19. Krothapalli, N. Deshmukh, A.: Dynamic allocation of communicating tasks in computa-
tional grids. IIE Transactions. Vol. 36, No. 11. (2004) 1037-1053

20. Chen, H. Maheswaran, M.: Distributed Dynamic Scheduling of Composite Tasks on Grid
Computing Systems. Proceedings of the Sixteenth International Parallel and Distributed
Processing Symposium (IPDPS 2002). Fort Lauderdale (April 15-19, 2002)

21. Subramani, V., Kettimuthu, R., Srinivasan, S., Sadayappan, P.: Distributed Job Scheduling
on Computational Grids using Multiple Simultaneous Requests. Proceedings of the Elev-
enth IEEE International Symposium on High Performance Distributed Computing (HPDC-
11 '02). Edinburgh (July 24-26, 2002) 359

22. SOAP V1.2 Part 1: Messaging Framework. W3C Recommendation (June 24, 2003)
23. WS Addressing. BEA Systems Inc., International Business Machines Corporation, and

Microsoft Corporation, Inc. (March, 2004)
24. WS Resource Lifetime, V1.1. Computer Associates International, Inc., Fujitsu Limited,

Hewlett-Packard Development Company, International Business Machines Corporation
and The University of Chicago (March, 2004)

25. Publish-Subscribe Notification for Web Services, V1.0. Akamai Technologies, Computer
Associates International, Inc., Fujitsu Limited, Hewlett-Packard Development Company,
International Business Machines Corporation, SAP AG, Sonic Software Corporation,
Tibco Software Inc. and The University of Chicago (March 2004)

26. WS Services Topics, V1.0. Akamai Technologies, Computer Associates International,
Inc., Fujitsu Limited, Hewlett-Packard Development Company, International Business
Machines Corporation, SAP AG, Sonic Software Corporation, Tibco Software Inc. and
The University of Chicago (March, 2004)

27. WS Service Group, V1.0. Computer Associates International Inc., Fujitsu Limited, Hew-
lett-Packard Development Company, International Business Machines Corporation and
The University of Chicago (March, 2004)

28. Distributed Resource Management Application API Specification 1.0. Global Grid Forum
(June, 2004)

29. Web Services Agreement Specification (WS-Agreement). Global Grid Forum (September,
2005)

30. Parallel Workloads Archive. The Hebrew University of Jerusalem.
http://www.cs.huji.ac.il/labs/parallel/workload/

31. Shan, H., Oliker, L.: Job Superscheduler Architecture and Performance in Computational
Grid Environments. Proceedings of the 2003 ACM/IEEE Conference on Supercomputing.
Phoenix (November 15-21, 2003) 44

32. Mills, K., Dabrowski, C.: Investigating Global Behavior in Computing Grids: the Ex-
tended Report. Draft technical report. U.S. National Institute of Standards and Technology
(Available from the authors).

Using Decentralized Clustering for Task
Allocation in Networks with Reconfigurable

Helper Units

Daniel Merkle, Martin Middendorf, and Alexander Scheidler

Parallel Computing and Complex Systems Group
Department of Computer Science

University of Leipzig
Augustusplatz 10-11

D-04109 Leipzig, Germany
{merkle, middendorf, scheidler}@informatik.uni-leipzig.de

Abstract. Computing systems are studied that consist of many (par-
tially) autonomous workers and helpers which are connected via a net-
work and where the helpers perform service tasks for the workers. In
order to execute different service tasks the helpers have reconfigurable
hardware. We address the problem to design a decentralized system
where the requests of the workers are executed by suitable helpers and
where the total reconfiguration costs of the helpers are small. A system is
proposed that uses a combination of a fully decentralized and dynamic
clustering algorithm and a self-organized task allocation system. The
clustering algorithm is used to classify the service requests that are sent
as packets through the network in order to give the helpers hints which
packets are suitable to be executed by them. Simulations have been done
for static and dynamic scenarios where we investigate the reconfigura-
tion costs and the number of dropped packets, i.e., requests that could
not be satisfied. The results show that the proposed system has a strong
adaptive behavior and that the decentralized clustering is able to reduce
the reconfiguration costs significantly.

1 Introduction

In this paper we consider computing systems that consist of many (partially)
autonomous components called workers. From time to time the workers need ser-
vice of different types. These requirements for service might occur more or less
regularly and are expected by the workers or the requests are unexpected due
to failures and unforseen by the workers. The service tasks are done by helper
components of the computing system. It is assumed that the computing system
follows the paradigm of autonomic computing (e.g., [2]) or organic computing
(e.g., [1]). This means that ideally there does not exists any central control and
the connections or relations between the components of the system are flexible.
Moreover the components itself might be flexible, e.g. they might reconfigure

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 137–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

138 D. Merkle, M. Middendorf, and A. Scheidler

themselves according to the needs of the environment or the user(s) of the sys-
tem. Here we assume that each helper can potentially perform all the different
service tasks. But for each type of service task a helper might have to reconfigure
itself in order to provide the resource requirements that are necessary to perform
the service task. It is assumed that each worker knows what type of service it
actually needs. Therefore the worker can include information about the type of
service it needs into its requests for service.

Worker-helper scenarios have already been studied in the literature. But to
consider reconfigurable helpers in such a scenario is a new aspect that is inter-
esting for organic computing systems. Some initial work in this area has been
done in [5]. However, in this work it was assumed that the workers choose ran-
domly a helper to ask for service. But in real systems which have a decentralized
organisation the workers and helpers might be connected via a network without
directly knowing from each other.

In this paper we address the problem how to organize the worker helper
system in a decentralized way so that the service requests of the workers that are
executed by a helper are suitable for this particular helper. A helper would not
like to satisfy just any service request because it might need much reconfiguration
before it can start performing the service tasks. When reconfiguration costs are
high there is the danger of an inefficient execution of the service tasks. Because
the helpers do not have a global view of the system they can not just chose a
service task that is suitable for them and can be done with only a small amount
of reconfiguration. When a helper is too selective some service tasks might never
been taken by any helper. But if a helper is not selective enough then its work
becomes inefficient.

The approach that we take in this paper is to use a decentralized clustering
scheme that clusters the service packets that are sent through a network. Such
a clustering scheme for packets in a network which is executed with the help of
the routers in the network has been proposed in [3,4]. For a general overview
over decentralized clustering methods that have been proposed in the literature
see [4]. The clustering scheme of [3,4] is used here to classify the service packets
according to their type so that packets for services that have similar hardware
requirements are put into the same cluster. Each helper can then specialize to
service requests from one cluster. Then, preferably it performs only service re-
quests from ”its own” cluster. Since the hardware resources that are needed for
the service tasks within one cluster are similar this will lead to small reconfigu-
ration costs. Several problems and questions that emerge for such a system are
addressed here. For example, the helpers should not specialize all to the same
cluster. Can the system handle situations where the classes of service tasks, that
are needed to be done, changes? How long should a service request packet be
sent around in the network before it might be dropped (in that case the worker
might be informed so that it can decide whether to sent another service packet).

The rest of the paper is organized as follows. In Section 2 the decentralized
algorithm that is used for clustering in networks is presented. The model of the
computing system and the self-organized task allocation scheme is introduced

Using Decentralized Clustering for Task Allocation in Networks 139

in Section 3. The combination of the clustering scheme with the self-organized
tasks allocation is described in Section 4. Experimental results are presented in
Section 5. Conclusions are given in Section 6.

2 Decentralized Packet Clustering in Networks

In [3,4] decentralized packet clustering algorithms in networks were investigated
for static and dynamic situations (i.e., the data vectors used for the cluster-
ing change over time). The corresponding clustering problem - called Decen-
tralized Packet Clustering Problem (DPC) - is to find for a set of packets
P = {P1, P2, . . . , Pn} that are sent through the network consiting of routers a
good clustering, i.e., a partitioning C = {C1, . . . , C|C|} of P . Each packet Pi ∈ P
contains a data vector vi that is used for the clustering. Instances of the DPC
problem differ with respect to network topology, number of routers, and how
packets are sent through the network. In the dynamic version called d-DPC the
data vector of a packet can change at every time step.

A successful and yet simple algorithm to solve the DPC problem is algorithm
d-DPClustzc - simply called d-DPClust in the following. For this algorithm each
packet Pi = (vi, ci) has a data vector vi and a cluster number ci. Each router
r stores a vector of estimated centroids Zr = (z1

r , . . . , z
|C|
r). When a packet Pi

arrives in a router the centroid estimation for cluster ci is modified according to
zci

r = (1 − β) · zci
r + β · vi, where β, 0 < β < 1 is a parameter of the algorithm.

Thus, β determines the share that the data vector vi has of the new centroid
estimation. Then, the new cluster number for packet Pi is determined by using
the distances of its data vector vi to the estimated centroids zj

r , j = 1, . . . , |C|
that are stored in the router. The packet is assigned to the cluster for which this
distance is minimal, i.e. ci = argminj ||vi − zj

r ||.
In [3] the algorithm d-DPClust was compared with the classical (centralized)

k-means algorithm with respect to several clustering validity measures (e.g., the
Silhouette coefficient [6] and the Dunn index [7]). The comparison was executed
for static and dynamic problem instances of the DPC problem. The algorithm
d-DPClust was shown to have a good clustering behavior. It was particularly
successful with regard to its adaptive behavior in situations with dynamically
changing data vectors.

3 Computing System and Self-organized Task Allocation

Our model of a computing system is as follows. The system consists of two types
of components or members, ordinary members called workers and supporting
members called helpers. Each helper has reconfigurable hardware (e.g., a Field
Programmable Gate Array (FPGA)) on which it performs the service tasks for
the workers. As a model for the reconfigurable hardware we assume that it
consists of q slices which can be reconfigured independently from each other.
Each slice is always configured so that it works in one of several modes. Different

140 D. Merkle, M. Middendorf, and A. Scheidler

slices can be configured in different modes. A reconfiguration operation has the
effect that the mode of some slices is changed. During a reconfiguration operation
helper can reconfigure any number of its slices.

In [5] a two helper computing system was analyzed analytically for situations
where the request rates for service tasks do not change and the helpers are not
reconfigured. Empirically computing systems with many components (helpers
and workers) were investigated. Different strategies for the behaviour of the
helpers were studied, e.g., when they should accept a service task and when
they should reconfigure themselves.

4 Decentralized Task Allocation in Networks

In this paper we propose a combination of a decentralized clustering algorithm
and a self-organized task allocation system to organize a worker-helper mecha-
nism via the network of a computing system. The network consists of routers
and helper nodes. Each helper has reconfigurable hardware in order to execute
different types of service tasks efficiently. The switch from one task to another
leads to reconfiguration costs, which are higher, the more the tasks differ in their
demands for hardware resource. During each time step several service requests
are created. To each service request corresponds a service packet that is sent
into the network. The resource demands for the corresponding service tasks are
specified in the packet. The number of service packets that are created per time
step is called the (packet) arrival rate.

The problem is to execute as many service tasks as possible and also to have
small reconfiguration costs for the helpers. Service tasks can only be executed
by the helpers. The helpers are allowed to reject service tasks. For each ser-
vice request packet the number of helpers that have been visited by the packet
(number of hops) is counted. If a packet is rejected by a helper this counter is
increased by one. If the counter of a packet exceeds a threshold value TTL (time
to life) the service request packet is dropped. The fraction of dropped packets
(in relation to all packets) is called the (packet) drop rate. The main idea is
to group the service tasks into clusters which have similar hardware resource
demands and to let the helpers specialize by allowing them to execute only the
service tasks from one of that clusters. Since all tasks in one cluster are similar
with respect to their resource demands and therefore also with respect to the
helper configuration that is needed, the reconfiguration costs for the helpers of
switching between these tasks are relatively small.

To group the service requests the decentralized clustering algorithm
d-DPClust is used. Each service request packet is thus characterized by a vector
(vi, ci) where ci ∈ {1, . . . , nc} is the cluster number and vi is a vector that de-
scribes the hardware resources needed for the corresponding service task, i.e., the
helper configuration that is required to execute the service task. In this paper it
is assumed that vi is a three dimensional vector, i.e. vi = (v1, v2, 1− v1 − v2) ∈
[0, 1]3, v1 + v2 ≤ 1. If a service task with data vector (v1, v2, 1 − v1 − v2) is
executed by a helper, then this helper node has to be reconfigured so that the

Using Decentralized Clustering for Task Allocation in Networks 141

v3

v1

v2

(0, 0, 1) (0, 1, 0)

(v1, v2, 1 − v1 − v2) = (1, 0, 0)

Fig. 1. The hardware resource requirements of a service request (v1, v2, v3) with v3 :=
1 − v1 − v2 are depicted within an equilateral triangle with height 1 (left); hardware
resource requirements of service requests of four different classes (right)

fraction v1 (respectively v2 and 1− v1 − v2) of its slices is configured in mode 1
(respectively mode 2 and mode 3).

Each helper node in the network has an associated cluster number. If the
cluster number of a service request packet that is received by a helper is identical
to its cluster number, then the helper is reconfigured so that is satisfies the
resource demands as specified in the packet. The service task is executed by the
helper and the packet is deleted (this is done within one simulation time step).
Otherwise, i.e., if the helpers cluster number is different from the packets cluster
number, the helper might change its cluster number to the cluster number of
the packet. The parameter p determines the probability that this happens. If the
helper does not change its cluster number to the cluster number of the arriving
service request, then the service packet is rejected and sent to another node in
the network. Note, that a service request is also rejected if the helper is already
executing another service request at the same simulation time step.

The configuration of a helper (corresponding to the a hardware demand of
the actual or last service task that is has executed) can be visualized as a point
in an equilateral triangle with height 1 (see left part of Figure 1). Note, that for
every point in the triangle the sum of the distances to the right, bottom, and
left line is 1. Let the distance from the bottom (respectively left and right) line
equal v1 (respectively v2 and 1− v1 − v2). If a helper is configured according to
(v1, v2, 1−v1−v2) and has to be reconfigured according to (w1, w2, 1−w1−w2),
then the costs of this reconfiguration are

max(|w1 − v1|, |w2 − v2|, |(1− w2 − w1)− (1− v2 − v1)|). (1)

Recall, that in contrast to the self-organized task allocation system as presented
in Section 3, it is assumed here that a helper that executes a service task i recon-
figures itself so that its configuration equals exactly the resource demand that
is specified by the vector vi of the corresponding service packet. Furthermore, it
is assumed that the execution of a task always takes one simulation time step.

142 D. Merkle, M. Middendorf, and A. Scheidler

5 Experiments

All test runs were performed in a scenario, where all service requests are from up
to four different classes. A snapshot from a typical test scenario is depicted in the
right part of Figure 1. Note, that a partitioning of the service request that leads
to small costs is not given in advance, as packets have a random cluster identity
when they are created. Within each class of service requests the individual re-
quests are chosen as follows. Let (c1

j , c
2
j , 1− c1

j − c2
j) be the center of request class

j, j ∈ {1, 2, 3, 4}. Then for a new service request with configuration request vec-
tor (v1

i , v2
i , 1− v1

i − v2
i) the value v1

i (respectively v2
i) is chosen randomly from the

interval [c1
j − 0.1, c1

j + 0.1] (respectively [c2
j − 0.1, c2

j + 0.1]). Requests for which
1 − v1

i − v2
i is not in the interval [0.9− c1

j − c2
j , 1.1 − c1

j − c2
j] are discarded. The

center of request class 1 is (1/3, 1/3, 1/3), the center of classes 2 (resp. 3 and 4)
are (2/3, 1/6, 1/6) (respectively (1/6, 2/3, 1/6) and (1/6, 1/6, 2/3)). If not stated
otherwise in each simulation time step 50 packets with service requests were sent
into the network. 50 helpers units and 50 routers were used. The probability p
that a helper changes its cluster was set to 0.01 (if not stated otherwise). Para-
meter β which influences the update of the centroid estimation in a router was
set to 0.1. If a centroid estimation has not changed by the last 100 packets that
arrived at a router, the new centroid estimation is set to the corresponding con-
figuration of the next arriving packet. Each result that is given in the following is
averaged over 10 simulation runs, i.e., each pair of cost/drop values is an average
calculated from 10 independent simulations. Each simulation was performed over
10000 steps. The reconfiguration costs that are given in the figures are the overall
reconfiguration costs that were spent by the helpers when executing the the ser-
vice requests (comp. Equation 1) divided by the number of all service requests,
that have been created during a simulation run.

5.1 Number of Clusters

We investigated the drop rate of the service request packets and the reconfigu-
ration costs for test runs with different number of service request classes. Using
1 request class (class 1), 2 request classes (classes 3 and 4), or 4 request classes
(all classes) the number nc of clusters that are used by the decentralized clus-
tering algorithm have been varied with nc ∈ {1, 2, . . . , 10} (comp. Figure 2(a),
2(c), and 2(e)). The results are depicted in the left column of Figure 2 when us-
ing TTL∈ {1, 5, 10, 50}. There is a clear trade-off between the drop rate and the
reconfiguration costs. When using a larger TTL value, the drop rate is reduced
significantly. The reduction of the reconfiguration costs for increasing number of
clusters nc depends strongly on the number of request classes. When 2 or 4 request
classes are used there is a sharp bend in the corresponding curves, as the algorithm
utilizes its adaptability. When nc is smaller than the number of request classes,
then some helpers have to execute service request of more than one class. This
leads to relatively high reconfiguration costs as can be seen in Figures 2(c) and
2(e), where packets from 2 or 4 service request classes were put into the network.
For example, when 2 request classes and TTL 5 are used, the costs are reduced

Using Decentralized Clustering for Task Allocation in Networks 143

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

dr
op

costs

10

1

TTL 1
TTL 5

TTL 10
TTL 50

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06

costs

1
50

TTL 1
TTL 5

TTL 10
TTL 50

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

dr
op

costs

TTL 1
TTL 5

TTL 10
TTL 50

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.02 0.04 0.06 0.08 0.1 0.12

costs

TTL 1
TTL 5

TTL 10
TTL 50

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

dr
op

costs

TTL 1
TTL 5

TTL 10
TTL 50

(e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

costs

TTL 1
TTL 5

TTL 10
TTL 50

(f)

Fig. 2. Drop rate/reconfiguration cost trade-off for different scenarios; left column: dots
on lines correspond to number of clusters nc ∈ {1, . . . , 10} (from left to right); numbers
at dots indicate number of clusters used; right column: dots on lines correspond to arrival
rates of {5, 10, . . . , 50} (from left to right) packets per simulation step; numbers at dots
indicate arrival rate; number of service request classes: 1 (top), 2 (middle), 4 (bottom)

144 D. Merkle, M. Middendorf, and A. Scheidler

from 0.28 when using nc = 1 to 0.07 when nc = 2 is used. A further increase of nc

(larger than the number of service request classes) reduces the costs only slightly.
The small reduction results from the fact that the service requests within one class
vary slightly with respect to their resource requirements. Therefore the reconfig-
uration costs of the helpers can be reduced slightly when the service requests of
one class are split into several clusters. The disadvantage is that the packet drop
rate increases with a higher number of cluster.

5.2 Work Load

In the following we compare simulations where the computing system has dif-
ferent work loads. This was done by using different arrival rates. The arrival
rate was set to {1, 5, 10, 15, . . . , 50}. The number of clusters for the decentral-
ized clustering algorithm was set to nc = 4 and similar to Subsection 5.1 the
number of service request classes was 1,2, or 4. The results are depicted in in
the right column of Figure 2.

Obviously, when using a very small (and unrealistic) value of TTL= 1 the
drop rate of the packets is very high (always larger than 0.69). But this value
is interesting because it shows the average fraction of packets that are not exe-
cuted by a single helper. The small number of service requests that are executed
produce only small reconfiguration costs. When using a higher TTL the drop
rate goes down significantly, e.g. for TTL=5 it is less than 0.3 is all cases. The
increase in reconfiguration costs is relatively small in this case (less than 0.13
when using 4 service request classes and an arrival rate of 10). When the value of
TTL is 50 nearly no packets are dropped in all the investigated scenarios. Also
the reconfiguration costs are small in this case (always < 0.13).

5.3 Changing Cluster Number of Helper Units

A strong influence on the adaptability of the helpers has the parameter p, which is
the probability that a helper changes its cluster number when an arriving packet
has a different cluster number. When p becomes larger the number of rejected
packets decreases and the reconfiguration costs increase. Note, that when using
p = 1 no arriving service request is rejected by a helper due to its cluster identity
(only when the helper is executing another service request a packet is rejected).
Rejecting a large number of packets leads to an increase of the drop rate. Drop
rates and reconfiguration costs were measured when using a cluster changing
probability of p ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}. The results
are depicted in Figure 3 for TTL values of 1, 5, 10, and 50. The smaller the TTL
values are the stronger is the decrease of the drop rate with increasing p. E.g,
when using TTL 5 the drop rate is decreased from 0.4 (for p = 0.01) to 0.1 (for
p = 1). But for high values of p the reconfiguration costs become large (they
increase from 0.04 to 0.17 for TTL=5 when p increases from 0.01 to 1).

5.4 Dynamically Adding and Removing Request Classes

To show the adaptability of our system a dynamic scenario was investigated
where the set of service request classes for which there are packets in the network

Using Decentralized Clustering for Task Allocation in Networks 145

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.04 0.08 0.12 0.16 0.2

dr
op

costs

0.001

1

TTL 1
TTL 5

TTL 10
TTL 50

Fig. 3. Drop rate/cost trade-off for different probabilities p that a helper changes
its cluster when an arriving packet has a different cluster number; p ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0} (from left to right)

changes. Service classes that are represented by packets in the network are added
and deleted during a simulation run. Starting with only one request class (class
1) we successively add classes 2, 3, and 4 every 1000 simulation steps (i.e. packets
of the corresponding classes are sent in the network). After that classes 2,3, and
4 were deleted successively every 1000 steps. In Figure 4 the results are depicted
for nc ∈ {1, 2, 4} clusters. When only one cluster is used each additional request
class increases the cost significantly, as the helper units have to be reconfigured
for different service request classes very often. When using nc = 4 the average
reconfiguration costs are much smaller. The additional reconfiguration costs that
occur after a new class has been added are due to the fact, that request classes
have to be partitioned with less clusters (or are not partitioned at all). This leads
to higher intra-class reconfiguration costs. These reconfiguration costs are much
smaller than the inter-class reconfiguration costs. Also the drop rate is always
very small for nc = 4. This result clearly shows the fast adaptive behavior of the
decentralized clustering component based on DPClust.

6 Conclusion

We have studied the problem to organize a computing system that consists of
worker and helper components which are connected via a network and where the
helpers perform service tasks for the workers. The helpers use reconfigurable hard-
ware so that they can execute different service tasks. In order to keep the total re-
configuration costs small the helpers should preferably execute service tasks that
need only a small amount of reconfiguration. In order to obtain a decentralized
mechanism and to make it suitable for the paradigm of organic computing we have
proposed to combine a fully decentralized and dynamic clustering algorithm with
a self-organized task allocation system. The clustering algorithm is performed by

146 D. Merkle, M. Middendorf, and A. Scheidler

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1000 2000 3000 4000 5000 6000 7000 8000

co
st

step

1 cluster
2 cluster
4 cluster

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1000 2000 3000 4000 5000 6000 7000 8000

dr
op

step

1 cluster
2 cluster
4 cluster

Fig. 4. Reconfiguration costs (top) and drop rate of packets (bottom) shown over a sim-
ulation run where service request classes are added successively (simulation steps 2000,
3000, and 4000) and then removed (simulation steps 5000, 6000, and 7000); initially
(steps 0-999) only one service request class is used; results are given for nc ∈ {1, 2, 4}

the routers in the network and classifies the service requests packets that are sent
through the network with respect to their hardware resource requirements (which
determine the ideal configuration of the helpers when they execute the service
task). Our simulations have shown that the proposed system has a strong adap-
tive behavior in static and dynamic scenarios and that the decentralized clustering
is able to reduce the reconfiguration costs significantly.

Acknowledgment

This work was supported by the German Research Foundation (DFG) through
the project Organisation and Control of Self-Organising Systems in Technical
Compounds within SPP 1183.

Using Decentralized Clustering for Task Allocation in Networks 147

References

1. GI: Organic Computing / VDE, ITG, GI - Positionspapier. 2003, http://www.
betriebssysteme.org/Betriebssysteme/FutureTrends/oc-positionspapier.pdf

2. J.O. Kephart, D.M. Chess: The Vision of Autonomic Computing. IEEE Computer,
36(1): 41-50, 2003.

3. D. Merkle, M. Middendorf and A. Scheidler. Dynamic Decentralized Packet Cluster-
ing in Networks. In: Rothlauf, F. et al. (editor): Proc. of the 2nd European Workshop
on Evolutionary Algorithms in Stochastic and Dynamic Environments, LNCS 3449,
574–583, 2005.

4. D. Merkle, M. Middendorf and A. Scheidler. Decentralized Packet Clustering in
Router-based Networks. International Journal of Foundations of Computer Science,
16(2): 321-341, 2005.

5. D. Merkle, M. Middendorf and A. Scheidler. Self-Organized Task Allocation for
Computing Systems with Reconfigurable Components. Rroc. of the 9th International
Workshop on Nature Inspired Distributed Computing (NIDISC’06), 2006, to be
published.

6. L. Kaufman, P.J. Rousseuw. Finding Groups in Data: An Introduction to Cluster-
Analysis. Wiley, New York, 1990.

7. J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters, J. Cybern., 3(3): 32-57, 1973.

Self-tuned Refresh Rate in a Swarm Intelligence
Path Management System

Poul E. Heegaard1 and Otto J. Wittner2

1 Telenor R&D� and Department of Telematics
Norwegian University of Science and Technology, Norway

poulh@item.ntnu.no
2 Centre for Quantifiable Quality of Service in Communication Systems��

Norwegian University of Science and Technology, Trondheim, Norway
wittner@q2s.ntnu.no

Abstract. CE-ants (Cross Entropy ants) is a distributed, robust and
adaptive swarm intelligence system for dealing with path management
in communication networks. This paper focuses on strategies for adjust-
ing the overhead generated by the CE-ants as the state of the network
changes. The overhead is in terms of number of management packets
(ants) generated, and the adjustments are done by controlling the gen-
eration rate of ants traversing the network. The self-tuned strategies
proposed in this paper detect state changes implicitly by monitoring pa-
rameters and ant rates in the management system. Rate adaptation is
done both in the network nodes and in the peering points of the virtual
paths. The results are promising, and compared to fixed rate strategies
the self-tuned strategies show a significant saving (70-85%) in number
of packets, and has similar (even slightly better) data packet delay and
service availability. The rate adaptation in network nodes provides fast
restoration with short path detection times and hence also high service
availability. The implicit self-tuned ant rate in the path endpoints im-
proves the convergence time on link state events without flooding the
network with management packets in steady state when these are not
required.

Keywords: Cross Entropy, swarm intelligence, CE-ants, network man-
agement, restoration time, service availability.

1 Introduction

In the next generation Internet, resource utilisation is likely to become an even
more important issue than in today’s networks. Paths between source destina-
tion pairs should be chosen to ensure an overall good utilisation of the network
� This work was partially supported by the Future & Emerging Technologies unit of

the European Commission through Project BISON (IST-2001-38923).
�� Centre for Quantifiable Quality of Service in Communication Systems, Centre of

Excellence appointed by The Research Council of Norway, funded by the Research
Council, NTNU and UNINETT. http://www.q2s.ntnu.no

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 148–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Self-tuned Refresh Rate in a Swarm Intelligence Path Management System 149

resources, and at the same time provide services with high throughput, low loss
and low latency. The available spare capacity in the network must be utilised in
such a manner that a failure results in a minimum disturbance in traffic flows. To
ensure overall system robustness and stay in-line with “Internet philosophy”, man-
agement systems for path discovery, setup and release, i.e. path management (to-
day realised by combining protocols like MPLS, RSVP, OSPF, BGP etc.), should
be truly distributed and adaptive. Proper path management requires that: a) the
set of operational paths should be continuously updated as the traffic load changes,
b) new paths should become almost immediately available between communica-
tion nodes when established paths are affected by failures, and c) new or repaired
network elements should be put into operation without unnecessary delays. Near
immediate and robust fault handling advocates distributed local decision-making
on how to deal with failures. However, one should be aware that applying truly dis-
tributed decision-making typically yields solution which are less fine tuned with
respect to optimal resource utilisation.

The combinatorial optimisation aspects of path management are typically NP-
hard; see for instance [1]. Nevertheless, considerable knowledge has been acquired
for planning paths in networks and insight and practical methods for obtaining
such paths by mathematical programming are available. For an overview, see
book by Pióro and Medhi [2] and references therein. Several stochastic optimi-
sation techniques have been proposed [3,4,5,6]. Common to these are that they
deal with path finding as an optimisation problem where the “solution engine”
has a global overview of the problem and that the problem is unchanged un-
til a solution is found. Hence these techniques are applied off-line and provide
management only on longer timescales (minutes-hours).

Schoonderwoerd & al. introduced a system that applies multiple agents with a
behaviour inspired by ants to solve problems in telecommunication networks [7].
Their system belongs to a group of systems today known as swarm intelligence
[8] systems, and has been studied further by others, see for instance [9,10,11]
and references therein. Self-management by swarm intelligence is a candidate to
meet the aforementioned requirements and to overcome some of the drawbacks
of the current path and fault management strategies. Heegaard, Wittner, and
Helvik [12] describe CE-ants (cross-entropy ants), a swarm intelligent based sys-
tem for dealing with path management in communication networks. In CE-ants
systems, there is a tradeoff between management overhead (number of manage-
ment packets) and path recovery time after failure events. This paper focuses on
bounding the overhead in CE-ants systems. Novel extensions to the self-tuned
rate control proposed by the authors in [13] are presented. With limited man-
agement overhead, the resulting CE-ants system performs adaptive multi-path
load sharing and stochastic routing with fast restoration on link failures.

The CE-ants system is briefly described in Section 2. The self-tuned ant rate
control mechanisms are presented in Section 3. In Section 4 the performance
of the self-tuned rate control mechanisms are evaluated by simulations where
a nationwide communication infrastructure is applied as the network topology.
Further work and concluding remarks are given in Section 5.

150 P.E. Heegaard and O.J. Wittner

2 Cross Entropy Ants (CEants)

A CE-ants system is a swarm intelligent system originally inspired by the for-
aging behaviour of ants. The idea is to have a number of simple ant-like mobile
agents, denoted just ants in this paper, iteratively searching for paths in a net-
work. Having search for and found a path, an ant backtracks and leaves mark-
ings, denoted pheromones, resembling the chemicals left by real ants during ant
trail development. The strength of the pheromones depends on the quality of
the path found. Hence, nodes hold distributions of pheromones pointing toward
their neighbour nodes. A new ant in its searching phase visiting a node selects
the next node to visit stochastically based on the pheromone distribution seen
in the visited node. Using such trail marking ants, together with evaporation
of pheromone, the overall process converges quickly toward having the majority
of the ants follow the trails that tend to be a near optimal path. Due to lim-
ited space the foundations for the CE-ants are only outlined in the following
paragraphs. See [11] for more details.

In [6] Rubinstein presents an algorithm for iteratively finding optimal solutions
to hard combinatorial problems. The algorithm is founded on the recognition
of that finding the optimal solution by random selection is an extremely rare
event. Rubinstein represents the total allocation of pheromones in a network by
a probability matrix Pt where an element Pt,ij reflects the normalised intensity
of pheromones pointing from node i toward node j. An ant’s stochastic search
for a sample path resembles a Markov Chain selection process based on Pt.
By importance sampling in multiple iterations Rubinstein alters the transition
matrix (Pt → Pt+1) and increases, as mentioned, certain probabilities such that
ants eventually find near optimal paths with high probabilities. Cross entropy
is applied to ensure efficient alteration of the matrix. To speed up the process
further, a performance function weights the path qualities such that high quality
paths have greater influence on the alteration of the matrix. A “temperature”
parameter γt in the performance function controls the focus of the overall search
towards high quality paths. Focus is tightened gradually, i.e. γt−1 > γt > γt+1,
to avoid local optimum (cf. simulated annealing [3].)

A distributed and asynchronous version of Rubinstein’s CE algorithm, today
known as CE-ants, is developed and described in details in [14]. On the contrary to
Rubinstein’s CEalgorithmwhere all ants must produce sample paths before Pt can
be updated, in CE-ants an optimised update of Pt can be performed immediately
after every new path ωt (where t is the t’th ant) is found, and a new probability ma-
trix Pt+1 can be generated. Hence CE-ants may be viewed as an algorithm where
search ants evaluate a path found (and re-calculate γt) right after they reach their
destination node, and then immediately return to their source node backtracking
along the path. During backtracking, pheromones are placed by updating the rel-
evant probabilities in the transition matrix. Due to the compact autoregressive
schemas applied in a CE-ants system, the system becomes both computationally
efficient, requires limited amounts of memory and is simple to implement.

In [15] elitism is introduced in the CE-ants system to reduce the overhead
by reducing the number of ant updates. The elite CE-ants system performs

Self-tuned Refresh Rate in a Swarm Intelligence Path Management System 151

significantly better in terms of the number of path traversals required to con-
verge toward a near optimal path. Only a selected set of ants, denoted the elite
set, backtrack their paths and update pheromones. This reduces the total num-
ber of backtracking traversals and pheromone updates. However, it is still an
open question how to determine the optimal ant generation rate with respect
to minimise overhead and maximise performance. This paper refines, extends
and significantly improves two previously rate adaptation strategies introduced
in [13]. The rate adaptation is integrated with the adaptive path strategy [12]
designed for fast restoration and adaptation to both link failures and changes in
traffic load.

3 Self-tuning Refresh Rate

On most network topology and traffic load changes, the adaptive path strategy
will almost immediately provide alternatives to the paths that are affected. This
is much due to that stochastic routing and exploration ants contribute to estab-
lishment of new paths and sporadicly refresh next best paths. The performance
of the path management depends on the number of ants sent. There is a tradeoff
between path recovery time and overhead in terms of ant messages as well as a
tradeoff between overhead and sensitivity to load change and failure frequencies.
Higher rates of messages imply faster recovery and higher sensitivity. In [13] the
authors conduct a comparative study of different rate adjustment strategies. Re-
sults of the study indicate that the most promising approach is a self-tuning rate
control that is implicitly adjusted as network topology or traffic load changes.
In [13], this implicit rate adjustment is with some success done at the end points
of the path. This section presents an improved self-tuning strategy that applies
to all nodes in the network. The system model is first introduced, followed by
definitions of performance metrics used for evaluation, and finally details of the
self-tuning strategy. The self-tuning strategy is designed to react to link failures
and restorations, as well as link overloads that imposes (temporary) excessive
delay and traffic loss.

3.1 System Model

The system considered in this paper is a bidirectional graph G(v, l) where v is the
set of nodes and l is the set of links. The objective is to find a virtual connection,
V C[s,d], between source node s and destination node d, with a minimum cost,
e.g. minimum delay between s and d. A V C[s,d] is constituted by one or more
paths, ω[s,d] = {s, · · · , d} ∈ Ω[s,d] where Ω[s,d] is the set of all feasible paths
between s and d. The links (edges), l[i,j], in the graph are specified by its end
nodes i and j. See Figure 1 for an illustration.

Discovery and maintenance of paths for virtual connections are handled by the
CE-ants method and is governed by determination of the cost of a path. In this
paper the link cost includes queueing and processing delay in the node and trans-
mission and propagation delay of the link. The cost of a link is denoted c(l) and

152 P.E. Heegaard and O.J. Wittner

l[i,j]

src
(s) (i) (j)

dst
(d)

 replicated forward ant
original forward ant

Fig. 1. Illustration of self-tuned local ant replication

will vary with traffic load and over time. The cost of a path is additive, c(ω) =∑
∀l∈ω c(l). The cost of a virtual connection is c(V C) = minω∈Ω c(ω) when the

minimum cost path is used, and c(V C) =
∑

ω∈Ω p(ω) · c(ω) when stochastic rout-
ing is applied over the available paths ω with path probability p(ω). The near op-
timal or best paths are referred to as the preferred paths of a VC.

The CE-ants system described in this paper is generating management packets,
denoted ants, at VC source s with rate λt at time t. The suffix t is ignored in the
following for notational simplicity. A high rate λ0 is applied in the initialisation
phase where ants explore the network by doing restricted random walks avoiding
revisites of nodes [14]. The short initialisation phase is followed by a convergence
phase leading to a steady state where ants are generated at a rate λs and nearly
all traverse the same path. Hence the ant generation rate λ varies between λ0 and
λs, i.e. λ0 > λ > λs. The ants contains the destination d and a species identity
id, < d, id >. The identity refers to an ant species with a designated task, in this
paper typically finding the minimum cost path from s to d. The CE-ants system
generates forward and backward ants with rates, λf and λb, respectively. λf = λ
at the source node while λb is governed by elite selection in the destination node.
λb → λf = λs when the system converges.

The forward and backward rates will change as the state of the links in the
network changes. The link state events that describe the network dynamics are
link failures, link restorations, and link overload. The rates are estimated by
discretizing the time axis with granularity τ and counting the number of ant
arrivals in time intervals of size τ . A running average λ̂ of these rate estimates
are generate applying an autoregressive formulation

λ̂k = αλ̂k−1 + (1 − α) · Nk

τ
, k ∈ P, λ̂0 = 0 (1)

where Nk = ‖{tx| (k − 1)τ ≤ tx < kτ ∨ tx ∈ Ta}‖ is the number of ant arrivals
in time interval k. Ta is the set of ant arrival events, where a ∈ {f, b} if the
arrivals are forward f or backward b ants. α is a memory factor that must be set
to ensure that the estimators react quickly enough to changes in the traversing
behaviour of the ants.

Self-tuned Refresh Rate in a Swarm Intelligence Path Management System 153

3.2 Performance Metrics

In Section 4, the performance of three variants of self-tuned strategies, denoted
global, global-local and local, are compared with the performance of a strategy
with fixed rate, denoted fixed. Changes in link state during the simulation ex-
periments are defined as link state events. The performance is compared by the
following metrics:

1. tr - the path detection time, is the time to detect a path in the virtual
connection. This is the time it takes from a link state event occurs, te, to a
new path from the source to the destination of a virtual connection is found,
i.e. to the first packet from source s arrives at destination d. Path detection
time indicates the system’s ability to sustain a connection.

2. to - the convergence time, is the time it takes to converge to a new optimal, or
at least good, solutions after a link state event. A VC is considered converged
when a ratio of φ [%] of all packets follow the same path. The convergence
time indicates the system’s ability to reestablish the desired level of service
quality for a connection after an link state event.

3. n - the number of ants generated per VC per time unit. The number of ants
indicate the amount management overhead generated.

4. A - is steady state service availability. The service is a virtual connection
with guaranteed service level, e.g. packet delay less than tmax [sec.] or packet
loss ratio pmax [%] . If the guarantee is violated the service is not available.

3.3 Self-tuned Implicit Rate Adaptor in VC Source Node

In [13] the authors introduced implicit rate adaptation of forward ants in the
source node of a VC. The forward rate adjustment scheme is based on the relative
difference between the current forward ant generation rate λ and an estimate
of the incoming ant rate λb (backtracking elite ants). After an adjustment, the
ant generation rate is bounded by maximum rate λ0 and a minimum rate λ0 · ε
where ε ∈ (0, 1]:

λk ← λ0 ·max(ε, 1− λ̂b,k

λk−1
), k ∈ P (2)

The implicit rate adaptor of Eq. (2) is re-applied in this paper. However λ̂b,k

is now estimated by recording arrivals of backward ants in the arrival set Tb and
using the autoregressive estimator in Eq. (1).

3.4 Self-tuned Replication of Ants in Nodes

With the self-tuned implicit rate adaptor from Section 3.3, the detection of a
link state event, and the corresponding increase in forward ant rate from the VC
source node, will happen some time after the event has occurred. The detection
time depends on the network topology, and location and nature of the link
state event. In order to reduce the detection time, a local message replication

154 P.E. Heegaard and O.J. Wittner

strategy may be added. In [16] a few local replication strategies, ranging from
flooding to controlled proliferation, were studied in P2P search strategies on
various graphs. Their search criterion is described as a meta-data set. In their
controlled proliferation strategy, the amount of overlap between the meta-data
set describing the search and what’s in the current node determines the number
of replica. The more overlap, the more replicas are issued. In the local replication
strategy in this paper, the purpose is to broaden the search when instabilities
are detected. This means that the number of replicas issued in a given node is
not related to the search criterion, i.e. the destination address, but determined
by the criticality of the detected link state event.

The local replication strategy suggested in [13] did not respond sufficiently
to the link state changes. Therefor, in this paper, a new and novel local repli-
cation strategy is suggested. The strategy is applies to all nodes, either as a
supplement to the implicit rate adjustment in the VC source node, or as the
only rate adaptation. In Section 4 the two variants are denoted global-local and
local respectively.

The basic idea is to detect the events implicitly based only on local informa-
tion in each node. When a link state event is detected that affects VCs with
their preferred path through node i, the number of forward ants from node i is
decreased or increased. An increase in the forwarding rate is achieved by making
copies of the ants that are forwarded from the VC source. In the following it is
distinguished between original forward ants < d, id > stemming from the VC
source node, and replicated forward ants < d, id >∗ which are replicas gener-
ated at one of the intermediate nodes between the source and the destination,
see Figure 1 for an illustration. An original forward ant can be replicated, but a
replica cannot be further replicated. The path history up to node i of the original
ant is copied to the ant replica. Both original and ant replicas are stochastically
routed from node i towards the destination according to the current pheromone
values in the intermediate node.

As for the self-tuned implicit rate adaptor in the VC source node, the link
state events along a preferred path can be detected by monitoring the difference
between the forward ant rate λ

(i)
f and the backward (elite) ant rate λ

(i)
b . If

λ
(i)
f − λ

(i)
b ≈ 0 the system has converged and the preferred path is through node

i. A large difference, λ
(i)
f − λ

(i)
b > 0, indicates either that the system has not

yet converged, or that a link failure has occurred affecting the preferred path
through node i. Before convergence is reached, a fraction of the ants will not
be returned due to the elite selection which rejects ants at the destination with
too high cost values, see [15]. This implies that λ

(i)
f > λ

(i)
b . On a link failure,

backtracking (elite) ants will not be able to return, which implies that λ
(i)
b ≈ 0.

In the converged case, few ants are required, while in the none-converged and
failure cases an increase in the forward ant rate is required. The number of
replicas is given by the replication forwarding rate λr. λr should be proportional
to the difference λ

(i)
f − λ

(i)
b to compensate for missing backward ants. Note that

in a state of global overload in the network an increased replication rate is not

Self-tuned Refresh Rate in a Swarm Intelligence Path Management System 155

optimal. However by ensuring that ants have low priority, or introducing an
upper bound on the ant rate, instabilities are avoided in overload situations by
dropping ant packets. Previous studies of the CE-ants system has shown that it
is robust to loss of management information and updates [12].

When node i has many out going links, i.e. a high out-degree νi, the node may
need more replicas to cover the neighbourhood. However, if only one (or a few)
link(s) have strong pheromone values, i.e. a high probability of being used, the
number of replicas does not need to be in proportion to the number of links since
all ants will follow the same (few) link(s) with high probability. In the opposite
case, when a node stores a close to uniform distribution of pheromone values, and
hence has weak information about which links will be used, more replicas are re-
quired to cover the neighbourhood. The entropy measure, E = −∑

∀x pxlog(px)
originally proposed by Shannon [17], is a suitable means to quantify the node’s
information about the neighbourhood. Hence in the replication rate estimator
of node i, the rate difference of forward and backtracking ants is weighted by
the out-degree of node i and the normalised entropy of the pheromone based
probability distribution P (i) stored in node i,

λ̂
(i)
r,k =

E
(i)
k

E
(i)
max
· νi · (λ̂(i)

f,k − λ̂
(i)
b,k) =

−∑νi

x=1 p
(i)
x log(p(i)

x)
log(νi)

· νi · (λ̂(i)
f,k − λ̂

(i)
b,k) (3)

where p(i) ∈ P (i).
The λ̂

(i)
f,k and λ̂

(i)
b,k are estimators determined by Eq. (1) using the time epochs

in Tf and Tb, respectively. Only the original forward and backward ants are
included in Tf and Tb. The entropy is scaled by the maximum entropy in
node i to produce a factor between 0 and 1. The maximum entropy is when
all links have the same pheromone values, i.e. p

(i)
x = 1/νi, which gives E

(i)
max =

−∑νi

x=1 1/νilog(1/νi) = −log(1/νi) = log(νi). Note that using the entropy mea-
sure only local, node specific, information is required, and no addition tuning
parameters are needed.

Eq. (3) is self-adjusting and designed not to impose instabilities. The estimator
has the following properties that bounds the replication rate:

1. λ̂
(i)
r,k → 0 as λ̂

(i)
b,k → λ̂

(i)
f,k : this happens when the path has converged.

2. λ̂
(i)
r,k → 0 as E

(i)
k → 0 : this happens when all ants are following the same

path, i.e. in node i this implies using the same link.
3. max λ̂

(i)
r,k = νiλ̂

(i)
f,k : this happens only when node i has not been, or is rarely,

visited and no pheromone values exists. The estimation of λf and λb is based
on observations of original ants only, and in the case where a node has been
visited rarely, λ̂

(i)
f,k is close to 0.

4 Case Studies of a National-Wide Internet Topology

To study the performance of the dynamic restoration strategies proposed in Sec-
tion 3, a series of simulation experiments have been conducted on the backbone

156 P.E. Heegaard and O.J. Wittner

topology of a Norwegian Internet provider. The topology, illustrated in Figure 2,
consists of a core network with 10 core routers in a sparsely meshed topology, a
ring based edge network with a total of 46 edge routers, and dual homing access
network with 160 access routers. The relative transmission capacities are 1, 1/4
and 1/16 for core, edge and access links, respectively. The avarage number of
hops between the access routers is 6.37, see Figure 2 for the hop distribution.

Fig. 2. The simulated backbone network. A virtual connection V C[74,164] is es-
tablished and monitored. The preferred path in stable phase is ω

(1)
[74,164] =

{74, 69, 13, 4, 2, 41, 164}. To the upper right, the distribution of the number of hops
of all paths between access nodes is given. The average number of hops is 6.37. The
preferred path ω

(1)
[74,164] of V C[74,164] consists of 6 hops.

The management of a single virtual connection, V C[74,164], and its correspond-
ing paths is studied in details. The paths are exposed to link state events like fail-
ures and restoration. Data traffic is routed according to the (multi)paths provided
by the management algorithm to improve service availability on link and node
failures. Furthermore, by applying multiple (parallel) paths when possible, load
distribution is achieved which again reduces delay and provides “soft” proactive
protection of the VC. The performance of the data traffic stream between node
74 and 164 is compared under the different restoration strategies. The simulation
series runs over a period [0,300] simulated real-time seconds divided in a number
of phases where different link state events occur affecting links along the preferred
paths of V C[74,164]. In [0,10] the network is initialised and explored by the CE-
ants system, followed by a stable period [10,90] where all links are operational. In

Self-tuned Refresh Rate in a Swarm Intelligence Path Management System 157

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300

[n
um

be
r

of
 p

ac
ke

ts
]

time

fixed

global-local

global

local

(a) Accumulative number of ants

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

[r
at

e
of

 p
ac

ke
ts

]

time

fixed

global

local

(b) Rate of ants

Fig. 3. Overhead in terms of forward ants. The local strategy has an overall 86%
reduction in number of ants compared to the fixed rate case.

[90,120] l[2,4] has failed and in [120,150] l[1,42] has also failed. l[2,4] is restored in
[150,180]. The most critical period is [180,210] where l[2,4], l[1,42] and l[1,3] have
simultaneously failed, followed by [210,240] where l[2,4] is restored again.

The simulation experiments compare a fixed rate strategy, denoted fixed and
having a rate of 500 ants/s, with three self-tuned strategies, one denoted global
that is only active in the VC source node, one denoted local that is active in all

158 P.E. Heegaard and O.J. Wittner

 0

 5

 10

 15

 20

 25

 30

[210,240][180,210][150,180][120,150][90,120][10,90]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

loca
l

global

fix
ed

loca
l

global

fix
ed

loca
l

global

fix
ed

loca
l

global

fix
ed

loca
l

global

fix
ed

loca
l

global

fix
ed

co
nv

er
ge

nc
e

tim
e

[s
]

pa
th

 d
et

ec
tio

n
tim

e
[s

]

convergence time
path detection time

Fig. 4. Path detection and convergence times for all schemes

nodes, and finally one denoted global-local which is a combination of global and
local. For global, local and global-local λ0 is equal to the fixed rate case, i.e. 500
ants/s. ε is set to 0.1 which results in a minimum rate of 50 ants/s. Parameters
from Eq. (1) are set to τ = 0.4 [sec.] and α = 0.8 (base on a rough parame-
ter study) to ensure a balance between reactivity to rate changes and damping of
rate oscillations. Results from simulations of the 4 different strategies are given
in Figure 3-6 and are base on 20 simulation replications of each of the strategies.
Note that results for global-local are only shown in Figure 3.(a) since this strategy
introduced increased overhead without significant improvements in performance
compared to the global or local strategies. Figure 3 shows the accumulated number
of ants as well as the rate of ants arriving at the destination node, and hence indi-
cates the amount of overhead generated by the different strategies. In Figure 4 the
path detection and convergence times are summarised applying φ = 80% as con-
vergence limit. The average and 95%-confidence limits of path detection, tr, and
convergence times, to are both measured from each link state event in the sim-
ulation period. Both Figures 5 and 6 focus on the most critical period [180,210]
of the simulation scenario. However, zoom-outs of the whole scenario period are
also included. In Figure 5 the average service availability of V C[74,164] is given for
tmax set to 110% of the delay of the optimal solution in the most critical period
[180,210]. Figure 6 shows the data packet performance in terms of delay.

A general observation from the results in Figure 4 is that the path detection
time is significantly less than the convergence times (averaged over all < 0.1%).
This implies that the service interruptions are very short.

From Figure 3 it is clear that the global source rate adaptation and the local
replication strategies generate significantly fewer ants (management packets),

Self-tuned Refresh Rate in a Swarm Intelligence Path Management System 159

 0

 0.2

 0.4

 0.6

 0.8

 1

 180 185 190 195 200 205 210

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

global

local

fixed

Fig. 5. Availability of V C[74,164] where the service level requirement tmax is set to 10%
above the delay of the optimal path in period [180,210] when three links are failed

 0

 10

 20

 30

 180 185 190 195 200 205 210 215 220 225

[m
s]

time

 0

 10

 20

 30

 0 50 100 150 200 250 300

global

local

fixed

Fig. 6. Data packet performance for V C[74,164]

in fact 70 - 85 % less than the fixed rate strategy. The global-local strategy
generates more overhead that global and local. Note that the absolute rates may
seem high, especially since they concern signalling traffic for managing a single
VC. However, in systems realising CE-ants path management, a single VC will

160 P.E. Heegaard and O.J. Wittner

typically carry a number of traffic flows. The overall data rate of the VC will
far exceed the ant-signalling rate. Due to the nature of the CE-ants system,
piggybacking ant information (typically less than 50 bytes) onto data packets
is also an option, and by that a limited number of separate (non-piggybacked)
signalling packets will be required.

Figure 6 shows that without reduced overhead, the performance of data traffic
for self-tuned strategies in terms of packet delay is similar to, or better than, the
fixed rate. This is confirmed by Figure 5 where the same relative performance
can be observed for the data service availability. In the critical period [180,210]
where a large number of ants are required to find a set of new good paths, the
global source rate and the local replication rate are adjusted producing the extra
boost of ants required to discover alternative paths. After convergence the rate
is self-tuned back to the minimum rate.

Comparing the local replication strategy with the global rate strategy, local
replication performs best with respect to path detection time and service avail-
ability (Figure 4 and 5). However the global rate strategy performs better with
respect to convergence time (Figure 4).

The overall service availability is only slightly distinguishable in the simulated
example. Fixed rate has an availability A = 0.9981, local replication has A =
0.9979, while global has A = 0.9973.

5 Concluding Remarks

CE-ants is a distributed, robust and adaptive swarm intelligence system for deal-
ing with path management in communication networks, and is based on Cross En-
tropy for stochastic optimisation. In this paper different strategies are studied to
control and reduce the overhead in terms of number of management packets (de-
noted ants) generated in this CE-ants system. Overhead reduction is achieved by
controlling the ant generation rate and the number of elite ants that update rout-
ing information in the network. A series of link state events are simulated and the
performance of three self-tuned strategies are compared to a fixed rate approach.
The self-tuned strategies involve both ant replication on demand in each nodes and
cost sensitive ant rate in VC source and destination. The results show a significant
saving (70-85%) in number of packets compared to a fixed rate strategy with the
same or better data packet delay and service availability. A purely local replication
strategy turns out with very limited overhead to provide fast restoration measured
by short path detection times and high service availability.

More case studies should be conducted with different transient periods and
combinations of link state events. It is also interesting to study scenarios where
differentiated service and dependability requirements lead to differentiated
restoration strategies. Further studies of the combination of local replications
and implicit source rate adaptation is planned to improve the interplay between
the two self-tuned rate adaptation approaches. The scaling, convergence, and
bounded properties of the self-tuned replication rate process and the implicit
source rate adaptation is also important further work.

Self-tuned Refresh Rate in a Swarm Intelligence Path Management System 161

Flooding the network under global overload should be avoided, and strategies
for piggybacking ant information on data packets and reservation of maximum
capacity for ant packets (the ant packets are small) will be considered. It has
previously been shown that the CE-ants system is robust to loss of management
updates and information. Hence, just dropping ants to avoid contributing to a
global overload may be an option.

References

1. M. O. Ball, Handbooks in Operation Research and Management Science, Network
Models, vol. 7. North Holland, 1995.

2. M. Pioro and D. Medhi, Routing, Flow and Capacity Design in Communication
and Computer Networks. ISBN 0125571895, Morgan Kaufmann Publishers, March
2004.

3. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated An-
nealing,” Science 220, pp. 671–680, 1983.

4. F. Glover and M. Laguna, Tabu Search. Kluwer Academic, 1997.
5. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.

Addison Wesley, 1998.
6. R. Y. Rubinstein, “The Cross-Entropy Method for Combinatorial and Continuous

Optimization,” Methodology and Computing in Applied Probability, pp. 127–190,
1999.

7. R. Schoonderwoerd, O. Holland, J. Bruten, and L. Rothkrantz, “Ant-based Load
Balancing in Telecommunications Networks,” Adaptive Behavior, vol. 5, no. 2,
pp. 169–207, 1997.

8. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to
Artifical Systems. Oxford University Press, 1999.

9. G. Di Caro and M. Dorigo, “AntNet: Distributed Stigmergetic Control for Commu-
nications Networks,” Journal of Artificial Intelligence Research, vol. 9, pp. 317–365,
Dec 1998.

10. O. Wittner and B. E. Helvik, “Distributed soft policy enforcement by swarm intelli-
gence; application to load sharing and protection,” Annals of Telecommunications,
vol. 59, pp. 10–24, Jan/Feb 2004.

11. O. Wittner, Emergent Behavior Based Implements for Distributed Network Man-
agement. PhD thesis, Norwegian University of Science and Technology, NTNU,
Department of Telematics, November 2003.

12. P. E. Heegaard, O. Wittner, and B. E. Helvik, “Self-managed virtual path manage-
ment in dynamic networks,” in Self-* Properties in Complex Information Systems
(O. Babaoglu, M. Jelasity, A. Montresor, A. van Moorsel, and M. van Steen, eds.),
Lecture Notes in Computer Science, LNCS 3460 (ISSN 0302-9743), pp. 417–432,
Springer-Verlag GmbH, 2005.

13. P. E. Heegaard and O. Wittner, “Restoration performance vs. overhead in a
swarm intelligence path management system,” in Proceedings of the Fifth Interna-
tional Workshop on Ant Colony Optimization and Swarm Intelligence (ANTS2006)
(M. Dorigo and L. M. Gambardella, eds.), LNCS, (Brussels, Belgium), Springer,
September 4-7 2006.

14. B. E. Helvik and O. Wittner, “Using the Cross Entropy Method to Guide/Govern
Mobile Agent’s Path Finding in Networks,” in Proceedings of 3rd International
Workshop on Mobile Agents for Telecommunication Applications, Springer Verlag,
August 14-16 2001.

162 P.E. Heegaard and O.J. Wittner

15. P. E. Heegaard, O. Wittner, V. F. Nicola, and B. E. Helvik, “Distributed asyn-
chronous algorithm for cross-entropy-based combinatorial optimization,” in Rare
Event Simulation and Combinatorial Optimization (RESIM/COP 2004), (Bu-
dapest, Hungary), September 7-8 2004.

16. N. Ganguly, L. Brusch, and A. Deutsch, “Design and analysis of a bio-inspired
search algorithm for peer-to-peer networks,” in Self-Star Properties in Complex In-
formation Systems (O. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi,
A. van Moorsel, and M. van Steen, eds.), vol. 3460 of Lecture Notes in Computer
Science, Springer-Verlag, 2005.

17. C. E. Shannon, “A mathematical theory of communication,” Bell System Technical
Journal, vol. 27, pp. 379–423, 623–656, July, October 1948.

Cross-Layer Approach to Detect Data Packet
Droppers in Mobile Ad-Hoc Networks

Djamel Djenouri1 and Nadjib Badache2

1 Basic Software Laboratory, CERIST Center of research, Algiers, Algeria
ddjenouri@mail.cerist.dz

2 LSI, USTHB University, Algiers, Algeria
badache@cerist.dz

Abstract. Mobile ad hoc networks (MANETs) are dynamic infrastruc-
tureless networks whose routing protocols are fully based on node co-
operation, and where each mobile node relies on other intermediate
mobile nodes to send packets towards remote ones. Being anxious about
its battery shortage, a node participating in the network and using the
forwarding service provided by other nodes might behave selfishly and
drop packets originated from others. Such a behavior hugely threatens
the QoS (Quality of Service), and particulary the packet forwarding ser-
vice availability. Another motivation to drop data packets is to launch a
DoS (Denial of Service) attack. To do so, a node participates in the rout-
ing protocol and includes itself in routes then simply drops data packet
it receives to forward. We propose in this paper a novel cross-layer
based approach to detect data packet droppers, that we optimize and
decrease its overhead. Contrary to all the current detective solutions,
ours is applicable regardless of the power control technique employment.

Keywords: mobile ad hoc networks, security, packet forwarding.

1 Introduction

The absence of any central infrastructure in MANET imposes new challenges,
since services ensured by the central infrastructure must be ensured by mobile
devices themselves in this new environment. Particularly, to ensure packets trans-
mission between remote nodes each mobile device (node) acts as a router and
devotes its resources to forward packets for others. This consumes its resources,
such as its limited battery. In some MANET applications, like in battlefields or
rescue operations, all nodes have a common goal and are cooperative by nature.
However, in many civilian applications such as networks of cars and provision
of communication facilities in remote areas, nodes do not belong to a single au-
thority and do not pursue a common goal. Forwarding packets for other nodes
is generally not in the direct interest of anyone in such networks, hence there is
no good reason to trust nodes and assume that they always cooperate. Indeed,
nodes try to preserve their batteries and might misbehave and tend to be selfish.
A selfish node regarding the packets forwarding process is the one which asks
others to forward its own data packets but drops their packets when asked to

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 163–176, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

164 D. Djenouri and N. Badache

relay them. Another motivation to drop data packets is rather aggressive; one
node could launch a DoS attack by participating in the routing protocol to
include itself in routes and simply dropping packets it receives for forwarding.
Whatever the motivation of the dropper is, this dropping threatens the QoS and
the service availability in the network. In the rest of this paper we call both the
previous malicious and selfish behavior misbehavior on packet forwarding.

Some solutions have been recently proposed to detect such a misbehavior, but
almost all these solutions rely on the watchdog technique [1] which suffers from
some problems, especially when using the power control technique employed by
some new power-aware routing protocols following the watchdog’s proposal.

In this paper we deal with this issue and propose a new cross-layer based ap-
proach, that consists of a protocol formed by two components. The first compo-
nent is located in the network layer and is in charge of monitoring nodes’ successors
forwarding, whereas the second one is located in the MAC layer and is responsi-
ble for appending two-hop ACKs (acknowledgments) to the standard MAC ACKs,
and for forwarding them. Note that these two-hop ACKs are special ACKs used by
our network component. By exploiting the standard MAC ACKs this cross-layer
architecture reduces the overhead compared with a standard one layer approach,
and gives more robustness. We also propose an optimization for more reducing the
overhead. To assess our solution’s performance we conduct a simulation study us-
ing GloMoSim [2], where we compare our protocol vs. the watchdog.

The remainder of this paper is organized as follows: The next section shows
the causes and the effects of the packet dropping misbehavior, and provides an
overview the solutions proposed in literature thus far. Section 3 is devoted to the
presentation and the analysis of our new approach, followed by the simulation
study in the next section. Finally, section 5 concludes the paper and summarizes
the future work.

2 Related Work

2.1 Misbehaving Causes and Effects

Recent studies show that most of one node’s energy in MANET is likely to be
devoted for packets relaying. For instance, the simulation study in [3] shows that
when the average number of hops from a source to a destination is around 5, then
almost 80% of a node’s transmission energy will be devoted to forward packets
for others. This motivates nodes to behave selfishly, and makes them unwilling
to relay packets not of direct interest to them. As mentioned before, another
motivation for dropping data packets is to launch a DoS attack targeting either
the source or the destination of packets. The full reliance on nodes’ cooperation
makes ad hoc networks hugely vulnerable to this attack.

The packet dropping misbehavior may lead to serious problems when per-
formed by many nodes in the network, such as throughput degradation, latency
rise, and network partition that threats the service availability which is one
of the security requirements. All these problems affect both well-behaving and
misbehaving nodes. Marti et al. [1] have shown by simulation that if 10% to

Cross-Layer Approach to Detect Data Packet Droppers 165

40% among the network’s nodes misbehave on data forwarding, then the aver-
age throughput degrades by 16% to 32%. Another study performed by Buttyan
and Hubaux [4] has been devoted to investigate the impact of the network size
by simulating networks of different sizes (from 100 nodes to 400 nodes) with the
same density, and comparing the effect of the same rates of misbehaving nodes
on the throughput. The results show that large networks are more vulnerable to
this kind of misbehavior.

2.2 Current Solutions

The emergent problem of packet dropping misbehavior in MANET has recently
received attention amongst researchers, and some solutions have been proposed.
These solutions could be classified into two main categories [5]: reactive solutions
that aim at detecting the misbehavior when it appears in the network, and pre-
ventive solutions which try to inhibit the misbehavior either by motivating nodes
to cooperate or by taking measures to prevent packets from being dropped. As far
as we know, Marti et al. are the first who dealt with this problem. In [1], they have
defined the watchdog technique that has been used by almost all the reactive so-
lutions subsequently proposed. This technique is based on the employment of the
promiscuous mode. When a node A, which may be either a source or an interme-
diate node, transmits a packet to B to forward to C, A monitors B’s forwarding
by promiscuously listening to the carrier and analyzing packets it overhears. A
validates B’s forwarding if and only if it overhears the packet transmission within
a given timeout, otherwise it increments a counter regarding B’s dropping. A will
accuse B as misbehaving as soon as the counter exceeds a given threshold. In this
approach, it is supposed that each transmission can be overheard by all the trans-
mitter’s neighbors if no collision takes place, and that the configured threshold is
high enough to overcome possible false detections due to channel conditions. The
watchdog requires no overhead, and is a relevant solution for detecting misbehav-
ing nodes when the previous assumptions are held.

Nevertheless, subsequent works in the field of the power consumption opti-
mization [6] [7] have proposed to use the power control technique when routing
packets. That is, the transmitter does not use a fixed full-power when trans-
mitting data packets to a given receiver, but an adaptable one according to the
distance separating the two nodes. Using the watchdog with this power-efficient
technique might cause false detections, as illustrated in the following example:
Assume B is a well-behaving node that uses controlled powers and the required
power from B to C is less than that needed to reach A from B, thereby the
packets sent from B to C will not be overheard at A. Consequently, node A will
not be able to validate any B’s forwarding and may accuse wrongly B as misbe-
having. In addition to its failure when employing the power control technique,
the watchdog cannot detect the misbehavior in some other cases such as [1]:

1. Partial dropping: node B can circumvent the watchdog by dropping pack-
ets at a lower rate than the watchdog’s configured minimum misbehavior
threshold. Remember that A accuses B as a misbehavior when A remarks
that the number of packets dropped by B exceeds a given threshold

166 D. Djenouri and N. Badache

2. Receiver collision: after a collision at node C, B could skip retransmitting
the packet without being detected by A

3. False misbehavior report: a node may falsely report other innocent nodes in
its neighborhood as misbehaving to avoid getting packets to forward through
them

4. Insufficient transmission power: B can control its transmission power to cir-
cumvent the watchdog. If A is closer to B than C, then B could attempt to
save its energy by adjusting its transmission power such that the power is
strong enough to be overheard by the monitoring node (A), but less than the
required transmission power for reaching the true recipient (C). Note that
performing this way is power-efficient for B.

5. Cooperated misbehavior: B and C could collude to cause mischief. In this
case, when B forwards a packet to C it does not report to A when C drops
the packet. C does the same thing when used as a predecessor of B in some
route. This kind of misbehavior is very hard to detect, and is out of the
scope of our proposal.

Marti et al. also propose the path rather, which helps to route packets around
misbehaving nodes detected by the watchdog. However, no punishment has been
defined, and no mechanism allowing nodes to exchange their experience regard-
ing the misbehaving nodes knowledge has been fixed by the authors. More recent
proposals have dealt with these issues.

In [8], Yang et al. describe a unified network layer solution to protect both rout-
ing and data forwarding in the context ofAODV. Michiardi and Molva [9] suggest a
generic reputation-based mechanism, namely CORE, that can easily be integrated
with any network function. CONFIDANT is another interesting reputation-based
solution, proposed by Buchegger and Le-Boudec [10]. Still, all these detective so-
lutions rely on the watchdog technique in their monitor component.

Buttyan and Hubaux [3] propose, model, and analyze an efficient preventive
economic-based approach stimulating nodes to cooperate. The authors introduce
what they call virtual currency or nuglets, along with mechanisms for charging
service usage. The main idea of this technique is that nodes which use a ser-
vice must pay for it (in nuglets) to the provider nodes. This concepts is used
and generalized to credit by Zhong et al. in SPRITE [11], where they propose
an improved solution compared with Nuglets. However, SPRITE introduces a
centralized point that is not realistic in the ad hoc context. Other stimulating
preventive approaches are based on the game theory, such as [12]. These pre-
ventive solutions motivate nodes to cooperate, but do not aim at detecting the
misbehaving nodes contrary to the previous ones.

In [13], Papadimitratos and Haas present the SMTP protocol. It is a hybrid
solution that mitigates the misbehavior effects (packets lost) by dispersing pack-
ets, and detects the misbehavior by employing end-to-end feedbacks. This kind
of feedbacks allows the detection of routes containing misbehaving nodes, but
fails to detect these nodes. Conti et al. [14] [15] propose another interesting
end-to-end feedbacks based solution, that uses a cross-layer interaction between
the network and the transport layers to decrease the overhead. To overcome

Cross-Layer Approach to Detect Data Packet Droppers 167

the detection problem of end-to-end feedbacks, Kargl et al [16] propose itera-
tive probing, that detects links containing misbehaving nodes but fails to detect
the appropriate nodes. To find the appropriate node on a link after an iterative
probing authors propose the so called unambiguous probing, which is based on
the watchdog thus suffers from its problems. In this paper we propose a detec-
tive solution to mitigate some watchdog’s problems, notably failures related to
the problems 2 and 4 presented before, and false detections when employing the
power control technique.

3 Novel Approach

3.1 Cross-Layer Two-Hop ACK

Our proposal aims at mitigating the watchdog’s problems, especially those re-
lated to the power control technique use, with reasonable overhead. To reduce
the cost (the overhead) of our solution we use a cross-layer based approach and
exploit the MAC layer feedbacks. Our monitoring protocol is composed of two
parts; the first one is located at the network layer, whereas the second one is
located at the MAC layer which is generally more tamper resistant.

Like in the watchdog, each node monitors the next forwarding of each packet
it transmits, and a source routing protocol is assumed to be used. To explain our
monitoring process we first deal with one forwarding, and we suppose in the fol-
lowing (like in the previous section) that node A sends packets to B and monitors
the forwarding to C. This process can be easily extended to all the hops along the
route. We use a new kind of feedbacks we call two-hop ACK, an ACK that travels
an intermediate node (two wireless links) [17]. Node C acknowledges packets it
receives by sending A via B a two-hop ACK. To reduce the overhead, the two-hop
ACK transmission from C to B is intergraded within the ordinary MAC ACK.

To prevent B from falsifying two-hop ACKs we suggest to use the following
asymmetric cryptography based strategy: Node A generates a random number
and encrypts it with C’s PK (Public Key), then appends it to the packet’s header.
When C receives the packet, it gets the number back, decrypts it using its SK
(Secret Keys), encrypts it using A’s PK, and finally puts it in a two-hop ACK
which is sent back to A via B. Instead of sending this ACK in a separate packet,
C uses the ordinary MAC ACK it sends back to B upon the reception of the
data packet and piggybacks the two-hop ACK to it. Node B, however, could not
delay its acknowledgment of the data packet reception from A, hence forwards
this ACK to A in a separate packet. When A receives the ACK it decrypts
the random number and checks if it matches with the one it has generated, in
order to validate B’s forwarding regarding the appropriate packet. If B does not
relay the packet, A will not receive a valid1 two-hop ACK and will be able to
detect this dropping after a timeout. This detection results in the increasing of
a counter on the packets dropped at B, and like in the watchdog, A accuses B
as misbehaving when this counter exceeds a configured threshold.

1 We assume that the encryption algorithm and SKs are robust enough.

168 D. Djenouri and N. Badache

Routing & IP

Network component

Network Layer

MAC component

MAC Protocol

MAC Layer

C
ro

ss
-l
a
y
er

co
m

m
u
n
ic

a
ti
o
n �

�
Upper layer packets

Upper layer
packets� �

�
2-hop ACK

� �
Upper layer
packets

�
2-hop ACK

�

�

U
p
p
er

la
ye

r
p
ac

ke
ts �

�M
A

C
A

C
K

�

�2-
h
op

A
C

K

Fig. 1. Cross-layer Architecture

Our approach needs a public key distribution mechanism which is out of the
scope of our purpose. However, a mechanism like the chain of trust [18] can be
used. Note that the same keys could be employed for other security purposes at
other layers, and are not inevitably peculiar to our solution.

Figure 1 illustrates our solution’s architecture, and the type of packets ex-
changed between the different components and protocols. Note that the MAC
component is only in charge of initiating two-hop ACK, forwarding them, and
passing them up to the network module, while the other monitoring functions
(requesting two-hop ACKs, validating the forwarding, counting the number o
packets dropped,..etc) are the responsibility of the upper component. In spite
of the cross-layer design that reduces the overhead, the major drawback of this
first solution is still the overhead it engenders as a two-hop ACK is required for
each data packet on each couple of hops regardless the nodes’ behavior, which is
costly. In the following we propose an optimization to more reduce this overhead.

3.2 Random Two-Hop ACK

To decrease this cost we suggest to randomize the ACK ask, i.e. node A does
not ask C an ACK for each packet but upon sending a packet to forward it
randomly decides whether it asks an ACK or not with a probability p, then
conceals this decision in the packet. A simple way to conceal the decision is to

Cross-Layer Approach to Detect Data Packet Droppers 169

exploit the random number. For instance, when the node decides to ask an ACK
it selects an even number, and an odd number when it decides not to ask the
ACK. This random selection strategy prevents the monitored node from deduc-
ing which packets contain ACK requests. Note that getting such information
allows a misbehaving to drop packets with no requests without being detected.
When the node decides not to ask an ACK it directly validates the forwarding,
whereas when it decides to ask an ACK it waits for it during a timeout like in
the ordinary two-hop ACK.The probability p is continuously updated as follows:
It is set to 1 (the initial value representing zero-trust) when a timeout exceeds
without receiving the requested ACK, and to Ptrust when the requested ACK
is received. This way more trust is given to well-behaving nodes, and the ACK
requesting is enforced after a lack of one ACK, which allows to achieve all by the
same performance in misbehaving detections (true positives) like the ordinary
two-hop ACK, as we will see later.

One possible obvious further optimization to improve the accuracy in detec-
tions of the random two-hop ACK monitoring is that node C acknowledges the
number of packets transmitted from the last ACK ask, instead of acknowledging
merely one packet. This way A would not directly validate packets with no ACK
request, but waits for the next requesting. To do this the number of packets
acknowledged needs to be carried and encrypted in each two-hop ACK, which
increases a little bit the overhead. However, we do not investigate this optimiza-
tion, since the basic random two-hop ACK converges rapidly to the ordinary
two-hop ACK (as it will be illustrated in the next section).

3.3 Analysis

Unlike the current detective solutions based on the promiscuous mode monitor-
ing (the watchdog), ours relies on the random two-hop ACK. The monitoring
node (A) validates the monitored node’s (B) forwarding when it receives an
ACK from the successor of this latter (C). This process can be generalized along
the path for each consequent two hops till the destination, and efficient encryp-
tion/decryption operations have been added in order to authenticate the two-hop
ACKs and secure the solution against spoofing attacks.

Getting rid of the promiscuous mode based monitoring makes our solution
independent of transmission powers, and resolves the watchdog false detection
problem related to the employment of the power-control technique. Moreover,
our solution resolves the problem 2 of the watchdog (section 2). When a collision
appears at C, B should retransmit the packet, otherwise A would not validate its
forwarding. This because B’s forwarding will not be validated at A until C really
receives the packet and sends back the two-hop ACK, unlike the watchdog where
the validation is only related to B’s first transmission. Our solution also solves
the problem 4 of the watchdog. Remember that when A is closer to B than C,
then B could save its energy and makes the transmission power strong enough
to be overheard by A but less than the one required to reach C. This problem
is eliminated in our solution, since B’s forwarding validation at A is not just
related to B’s transmission but to C’s reception. Furthermore, the two-hop ACK

170 D. Djenouri and N. Badache

we use allows to detect the appropriate misbehaving node, unlike the end-to-end
ACKs [13] and the iterative probing [16].

Our solution has been designed using a cross-layer approach and has been
divided into two components; one in the MAC layer and the other in the network
layer. This cross-layer approach allows the integration of the two-hop ACK into
the ordinary MAC ACK, which reduces the communication overhead. In the rest
of this analysis we assume that there is no packet loss. Later in our simulation
study we will make more investigations of more realistic scenarios with mobility
and collusion. If we assume the average path length is H hops, the worst case
communication complexity (when all nodes well behaves) of our first solution
is: O((H − 1)) two-hop ACK transmissions, which is identical to the end-to-
end ACK employment and iterative probing [16]. If we used a standard one
layer approach then two separate transmissions would be required for each hop,
hence the overhead would be O(2 × (H − 1)). This communication complexity
also represents the number of additional steps to execute the protocol (without
considering the forwarding steps) for all the previous protocols, except for the
iterative probing [16] in which the communication complexity is O((H − 1) +
log(H−1)) when a misbehavior occurs; (H−1) for waiting for end-to-end ACKs
(used in this approach) and log(H − 1) for probing, and it is O((H − 1)) when
no misbehavior takes place.

Although our first protocol is a bit faster in detection than iterative probing2

with the same communication overhead complexity, its communication overhead
remains high, since an ACK is required for each data packet on each couple of
hops regardless the nodes’ behavior. Our randomization of the two-hop ACK
asking strategy reduces more the overhead, especially when nodes well behave
as we will see later. The worst case communication complexity of this solution
is O(ptrust × (H − 1)). The accurate value of the communication overhead (for
both the ordinary and random two-hop ACK versions) depends on the nodes’
behavior. Suppose that the monitored node misbehaves (drops the packet) with
a probability (expectation) θ. Thereby, the reduction factor (RF) provided by
the random approach optimization (the overhead of the ordinary two-hop ACK/
the overhead of the random version) can be approximated by:

RF ≈ 1− θ(1 − Ptrust)
Ptrust

(1)

The steps for computing the overhead of both versions and thus RF are removed
due to space limitation, they can be found in our technical report [19].

In the following we discuss the factor for Ptrust = 1/4, 1/2, 3/4.

– when Ptrust = 1/4, RF ≈ 4− 3θ
– when Ptrust = 1/2, RF ≈ 2− θ
– and finally, when Ptrust = 3/4, RF ≈ 4−θ

3

Now, we discuss the efficiency (accuracy in detection) of the random two-hop
ACK vs. the ordinary two-hop ACK. The behavior of the node for each packet
2 It is faster since it involves O(H − 1) steps instead of O(H − 1) + log(H − 1).

Cross-Layer Approach to Detect Data Packet Droppers 171

follows a Bernoulli distribution with a parameter θ (the expectation which is
the probability of dropping). Monitoring n packets could be considered as the
repetition of the previous operation (monitoring one packet) n times. Therefore,
the number of packets dropped (pdr) for n packets is a random variable that is the
sum of n random variables which follows a Bernoulli distribution with parameter
θ, thus follows a Binomial distribution with expectation: E(pdr) = θ × n.

Theoretically, the ordinary two-hop ACK detects all this number of packets
(when the assumption of no packet loss is held). The purpose now is to assess the
number of packets dropped and detected (pd) by the random two-hop ACK, i.e.
E(pd), then we will investigate the detection ratio DR = E(pd)/E(pdr). This
ratio shows how the random version is close to the ordinary two-hop ACK in
detections. The probability of requesting an ACK of the random two-hop ACK
algorithm is continuously updated, it differs from one operation (monitoring one
packet) to another according to the result of the previous operation and the
previous behavior. We denote the algorithm’s probability of requesting an ACK
for a packet i (the value of p set by the algorithm for the packet i, which is a
random variable) by Pi. Consequently, the real probability (in the execution)
of asking an ACK for packet i would be expressed by E(Pi). Pi is fixed to 1
if in the previous operation the packet was dropped and detected, that is with
the probability3 θE(Pi−1), otherwise it is fixed to Ptrust, i.e. with probability
1− θE(Pi−1). Therefore, the mathematical expectation of Pi could be expressed
by: E(Pi) = 1× θE(Pi−1) + Ptrust × (1− θE(Pi−1)). Hence:
E(Pi) = Ptrust + θ(1 − Ptrust)E(Pi−1).
The number of packets detected by the random strategy (pd) also follows a
Binomial distribution, since it is the results of repeating a Bernoulli operation n
times with parameter θPi, but the only difference from the continuous requesting
is that in this latter strategy (Pi) is not constant. We have:

E(pd) =
n∑

i=1

θE(Pi) = θ

n∑
i=1

E(Pi) (2)

Note that P1 = 1.

Lemma 1. ∀i ≥ 1,

E(Pi) = θi−1(1− Ptrust)i + Ptrust

i−1∑
j=0

θj(1− Ptrust)j

Using this lemma, formula 2 could be developed into:

E(pd) =
θPtrust

1−θ(1−Ptrust)
n + θ(1− Ptrust)

1−θn(1−Ptrust)n

1−θ(1−Ptrust)
(1− θPtrust

1−θ(1−Ptrust)
) (3)

The steps of simplification, as well as the proof of lemma 1 are available in
[19].

3 The probability of detection is the probability of asking an ACK in the (i − 1)th

operation. The events dropping the ithpacket and requesting ACK for the (i − 1)th

packet are independent.

172 D. Djenouri and N. Badache

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
R

ed
uc

tio
n

F
ac

to
r

Theta

Ptrust=1/4
Ptrust=1/2
Ptrust=3/4

Fig. 2. Overhead Reduction Factor

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
et

ec
tio

n
R

at
io

Theta

Ptrust=1/4
Ptrust=1/2
Ptrust=3/4

Fig. 3. Detection Ratio

This probability depends on many parameters, we will investigate it as well
as the detection ratio (DR) vs. some usual values of Ptrust.
For Ptrust = 1/4, E(pd) ≈ θ

4−3θn, DR ≈ 1
4−3θ

for Ptrust = 1/2, E(pd) ≈ θ
2−θn, DR ≈ 1

2−θ

and finally, for Ptrust = 3/4: E(pd) ≈ 3θ
4−θn, DR ≈ 3

4−θ
Figures 2 and 3 illustrates respectively the approximated reduction and de-

tection ratios according to θ. We remarque that Ptrust = 0.5 strikes a balance
between efficiency (detection ratio) and cost (reduction factor). It decreases the
complexity overhead as much as half (when nodes well-behave), while keeping
the detection ratio good enough (always ≥ 0.5). Contrary to Ptrust = 0.25 that
has too low values of detection ratio for low and average misbehaving, and to
Ptrust = 0.75 that has too low values of reduction factor. Thus, we fix Ptrust = 0.5
later in our simulation study.

As illustrated, authentication of the two-hop ACK packet is ensured by em-
ploying encreption/decreption operations on a random number, generated by
the monitor and piggybacked to the monitored packet. These operations have
minor impact, since they are applied merely on the random number and not on
the whole packet holding it. Note that we avoided the use of digital signatures
in order to avoid useless packet’s hash computation.

4 Simulation Results

To evaluate the performance of the proposed protocol we have driven a Glo-
MoSim based [2] simulation study, that we present hereafter. We have simulated
a network of 50 nodes located in an area of 1500 × 1000m2, where they move
following the random way-point model [20] with an average speed of 1m/s for
900 seconds (the simulation time). To generate traffic we have used three CBR
sessions between three pairs of remote nodes, each consists of continually sending
a 512 bytes data packet each second. On each hop, every data packet is trans-
mitted using a controlled power according to the distance between the transmit-
ter and the receiver. We compare two versions of our protocol, 2HopACK and
Random 2HopACK, as well as the watchdog (WD), with regard to the true

Cross-Layer Approach to Detect Data Packet Droppers 173

positive rate, the false positive rate, and the number of two-hop ACKs (which
represents the overhead). We measured these metrics vs. the misbehaving nodes
rate, which represents the rate of nodes that misbehave and drop packets they
are asked to relay. Each point of the plots presented hereafter has been obtained
by averaging five measurements with different seeds. Note that like the watchdog
we implemented our protocol with DSR for this simulation. However, it can be
implemented with any source routing protocol. Also note that WD requires no
kind of ACKs, so the last metric (number of two-hop ACK) concerns merely our
protocol’s versions. In this study we empirically fixed the tolerance threshold4

to 100 packets, we plane to make more investigations on optimal values and
strategies in our future work.

4.1 True Positive Rate

The true positive rate (TPR) represents the efficiency on packet droppers detec-
tion. It is the average rate of true detections computed as follows:

TPR =
n∑

i=0,mi �=0

tdi/mi

k
tdi: is the true detections of node i, i.e. the number of

misbehaving nodes monitored by node i that are detected.
mi: the number of misbehaving nodes monitored by node i.
n: the number of nodes.
k: number of nodes that have monitored misbehaving nodes (whose mi
= 0).

We remark in figure 4 that except for low misbehaving rate (10%) TwoHopACK
has the best detection rate above 0.5, and that RandomTwoHopAck has relatively
lower TPR values but very close to those of TwoHopACK. We can also see that
both protocols outperform WD. The increase of the TPR rate with misbehaving
rate can be argued by: In low misbehaving rates the rate of nodes monitored but
not judged (for which numbers of packets monitored did not exceed the threshold)
is important thus they are not detected because of the experience lack, but as the
misbehaving rate increases this rate decreases and monitors get enough samples
to make judgments. Defining optimally the tolerance threshold could improve the
TPR, especially for low misbehaving rate. This issue will be investigated in our
future work.

4.2 False Positive Rates

This metric, we denote by FPR, will show how our protocol mitigates false
detections of packet dropping due to the power control use.

It is the average rate of false detections giving by the following formula.

FPR =
n∑

i=0,m′
i �=0

fdi/m′
i

k′

4 The number of packets detected dropped upon which the node is accused.

174 D. Djenouri and N. Badache

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 10 15 20 25 30 35 40 45 50

T
ru

e
D

et
ec

tio
n

ra
te

Misbehaving nodes rate

TwoHopACK
RandomTwoHopACK

WD

Fig. 4. True positives

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0 5 10 15 20 25 30 35 40 45 50

F
al

se
 D

et
ec

tio
n

R
at

io

Misbehaving nodes rate

TwoHopACK
RandomTwoHopACK

WD

Fig. 5. False positives

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5 10 15 20 25 30 35 40 45 50

nu
m

be
r

of
 2

 h
op

 A
C

K
s

Misbehaving nodes rate

TwoHopACK
RandomTwoHopACK

Fig. 6. Number of two-hop ACK packets

where:
fdi: is the false detections of node i, viz the number of well-behaving nodes
monitored by node i that are wrongly detected.
m′

i: the number of well-behaving nodes monitored by node i.
n: the number of nodes.
k′: number of nodes that have monitored well-behaving nodes (whose m′

i
= 0).
As illustrated in figure 5 both versions of our protocol have low FPR, contrary

to WD which causes too high FPR. The FPR of our protocol is basically caused
by collisions and nodes mobility, whereas the big difference between our protocol
and WD is due to false detections engendered by the power control technique
use. Still, optimal definition of the tolerance threshold could minimize the FPR
due to channel and mobility conditions.

4.3 Overhead

The overhead of our protocol is the number of two-hop ACK packets, depicted
in figure 6. Note that WD is excluded here since it requires no communication
overhead for monitoring. RandomTwoHopACK reduces considerably the over-
head particularly for low and average misbehaving rates. This improvement is
due to the efficient technique of randomizing the ACK requests.

Cross-Layer Approach to Detect Data Packet Droppers 175

5 Conclusion and Future Work

In this paper we have proposed a novel cross-layer based solution, aiming at
detecting the misbehaving nodes that do not correctly cooperate for forwarding
data packets. Instead of using the end-to-end ACK [13] or iterative probing [16]
our solution is based on the two-hop ACK, which allows to detect the misbehav-
ing node and not just the route containing such a node or just the appropriate
link. Unlike the watchdog, our solution is applicable regardless the power control
technique employment. Moreover, it allows the misbehaving nodes detection in
some cases where the watchdog fails (in cases 2 and 4 presented in section 2).
Our solution is composed of two components, one located at the MAC layer
and the other at the network layer. This cross-layer design decreases the com-
munication overhead as much as half compared with a standard network layer
implementation of the proposed technique. In spite of this improvement, the first
solution requires an ACK for every data packet on each hop, which is still costly.
To reduce this cost we have suggested to randomize the two-hop ACK request-
ing, with probabilities continuously update in such way to give more trust to
well behaving node and zero-trust to any node observed dropping a packet. The
analysis and simulation results show that the random two-hop ACK is all but
as efficient as the ordinary two-hop ACK in high true and low false detections,
while hugely reducing the overhead, and that both versions clearly outperform
the watchdog especially on false detections. Simulation results also show that
there are always possibility of false detections due to collisions and nodes mo-
bility, thus the tolerance threshold is of high importance.

As perspective we plane to provide a rigorous definition to this tolerance
threshold that should be well configured to overcome dropping caused by chan-
nels and mobility conditions. We also plan to complete the proposal by defin-
ing actions to take when a node is accused as a misbehaving, and by propos-
ing a mechanism allowing nodes to exchange their knowledge regarding nodes
that misbehave. Monitoring routing control packets, especially those broadcasted
with which two-hop ACK is impractical, is also in our agenda.

References

1. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile ad
hoc networks. In: The 6th ACM Conference on Mobile Computing and Networking,
MOBICOM 2000, Boston, MA, USA (2000) 255–65

2. Zeng, X., Bagrodia, R., Gerla, M.: Glomosim: A library for the parallel simulation
of large-scale wireless networks. In: The 12th Workshop on Parallel and distributed
Simulation. PADS’98, Banff, Alberta, Canada (1998) 154–161

3. Buttyan, L., Hubaux, J.: Stimulating cooperation in self-organizing mobile ad hoc
networks. ACM/Kluwer Mobile Networks and Applications 8 (2003)

4. L.Buttyan, Hubaux, J.: Nuglets: a virtual currency to stimulate cooperation in
self-organized mobile ad hoc networks. Technical Report DSC/2001/001, Swiss
Federal Institute of Technology, Lausanne, Switzerland (2001)

5. Djenouri, D., Khalladi, L., Badache, N.: Security issues in mobile ad hoc and sensor
networks. IEEE Communications Surveys and Tutorials 7 (2005) 2–29

176 D. Djenouri and N. Badache

6. Doshi, S., Brown, T.: Minimum energy routing schemes for a wireless ad hoc net-
work. In: The 21st IEEE Annual Joint Conference on Computer Communications
and Networking(INFOCOM’02), New York, USA (2002)

7. Djenouri, D., Badache, N.: New power-aware routing for mobile ad hoc networks.
The International Journal of Ad Hoc and Ubiquitous Computing (Inderscience) 1
(2006) 126–136

8. Yang, H., Meng, X., Lu, S.: Self-organized network layer security in mobile ad hoc
networks. In: ACM MOBICOM Wireless Security Workshop (WiSe’02), Georgia,
Atlanta, USA (2002)

9. Michiardi, P., Molva, R.: Core: A collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks. In: Communication and Multimedia
Security 2002 Conference, Portoroz, Slovenia (2002)

10. Buchegger, S., Le-Boudec, J.Y.: A robust reputation system for p2p and mobile
ad-hoc networks. In: Second Workshop on the Economics of Peer-to-Peer Systems,
Harvard university, Cambridge, MA, USA (2004)

11. Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple, cheat-proof, credit-based sys-
tem for mobile ad-hoc networks. In: The 22st IEEE Annual Joint Conference on
Computer Communications and Networking(INFOCOM’03), San Francisco, CA,
USA (2003)

12. Srinivasan, V., Nuggehalli, P., F.Chiasserini, C., R.Rao, R.: Cooperation in wire-
less ad hoc networks. In: The 22st IEEE Annual Joint Conference on Computer
Communications and Networking(INFOCOM’03), San Francisco, California, USA
(2003)

13. Papadimitratos, P., Haas, Z.J.: Secure data transmission in mobile ad hoc net-
works. In: ACM MOBICOM Wireless Security Workshop (WiSe’03), San Diego,
California, USA. (2003)

14. Conti, M., Gregori, E., Maselli, G.: Towards reliable forwarding for ad hoc net-
works. In: Personal Wireless Communications (PWC 03). Number 2775 in LNCS,
Venice, Italy, Springer-Verlag GmbH (2003) 169–174

15. Conti, M., Gregori, E., Maselli, G.: Improving the performability of data transfer in
mobile ad hoc networks. In: the Second IEEE International Conference on Sensor
and Ad Hoc Communications and Networks (SECON’05), Santa Clara, CA, USA
(2005)

16. Kargl, F., Klenk, A., Weber, M., Schlott, S.: Advanced detection of selfish or
malicious nodes in ad hoc networks. In: 1st European Workshop on Security in
Ad-Hoc and Sensor Networks, ESAS’04, Heidelberg, Germany (2004)

17. Djenouri, D., Badache, N.: New approach for selfish nodes detection in mobile ad
hoc networks. In: The first IEEE/Creat-net Workshop on Integration of Security
and Quality of Service (SecQoS’05), Athens, Greece (2005)

18. Capkun, S., Buttyan, L., Hubaux, J.P.: Self-organized public-key management for
mobile ad hoc networks. IEEE Transactions on Mobile Computing 2 (2003) 52–64

19. Djenouri, D., Badache, N.: Cross-layer approach to detect data packet droppers in
mobile ad-hoc networks: extended version. Technical Report LSI-TR-0606, USTHB
University, Algiers, Algeria (2006)

20. Maltz, J.B.D., Hu, Y.C., Jetcheva, J.: A performance comparison of multi-hop
wireless ad hoc network routing protocols. In: The fourth Annual ACM/IEEE
International Conference On Mobile Computing And Networking (MobiCom’98),
Dallas, TX, USA (1998) 85–97

On-Demand Distributed Energy-Aware Routing
with Limited Route Length�

Cheolgi Kim1, Kisoo Chang2, and Joongsoo Ma1

1 Information and Communications University, Daejeon 305-732, Korea
2 Samsung Advanced Institute of Technology, Suwon 449-712, Korea

Abstract. In ad hoc networks, energy preservation on communication
is crucial because most of nodes are battery-powered. On the other
hand, communication delay is an important factor of real-time commu-
nications. Since energy-aware routes commonly have long route lengths,
which commonly result long communication delays, a trade-off has to
be made on route setup between energy preservation and communica-
tion delay. Moreover, long route length also incurs high packet drop
rate, which causes low reliability and high retransmission cost. We pro-
pose on-demand energy-aware route search algorithms with limited route
length (ODEAR-LRL). ODEAR-LRL exploits timer-based RREQ flood-
ing method. Even though timer based RREQ flooding does not guaran-
tee the optimality, our evaluation shows that our on-demand algorithms
fairly approximate to the optimal cost.

1 Introduction

In ad hoc networks, power consumption is a critical issue because most of the
participating nodes are supposed to be battery-powered. Even though the energy
optimization algorithms in centralized networks have been widely investigated,
most of them cannot be directly adapted to ad hoc networks. In centralized
networks, base stations are exploited for energy saving of subscriber stations
in many aspects, while ad hoc networks hardly have a device which is able
to sacrifice itself for other nodes’ energy preservation. Thus, the collaborating
methods have been investigated for energy saving in ad hoc networks.

Among energy saving methods in ad hoc networks, a transmission power con-
trol is one of the mostly considered approaches. In the method, transmission
power is supposed to be controlled to the minimum power level such that the
expected receiving power be a given bit error rate (BER), while IEEE 802.11
specifications declares that a transmission power is fixed to a constant value
limited by FCC regulation. The receiving power is given by

PR =
ζPT

dK
(1)

� This research was supported by the SAIT (Samsung Advanced Institute of Tech-
nology), Korea, and the MIC(Ministry of Information and Communication), Korea,
under the ITRC(Information Technology Research Center) support program super-
vised by the IITA(Institute of Information Technology Assessment).

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 177–186, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

178 C. Kim, K. Chang, and J. Ma

where ζ is a shadowing coefficient, PT is transmission power level, d is the dis-
tance between the nodes and K is a path loss coefficient, usually larger than two
[1]. Given BER, transmission power is a function of the distance between the
source and the destination. If a distance between them decreases to a half, the
transmission power commonly decreases to a value less than a quarter.

Because of the exponent K, which is usually larger than two, the triangular
inequality cannot be applied to the total transmission power of a route. Thus, the
total transmission power can be reduced by including appropriate intermediate
relay nodes in the route. In this article, we call the routing schemes exploiting
this property as energy-aware routing. There have been a lot of such energy-
aware routing algorithms proposed [2, 3, 4, 5, 6, 7]. Notice that energy-aware
routes commonly have long route lengths (or hop counts) because of many relay
nodes to reduce the total transmission power. The long route length incurs two
problems as follows:

High end-to-end packet loss rate. End-to-end packet delivery rate is lower
with longer route length since packet error rate per hop is commonly fixed
when transmission power is controlled. It not only reduces the quality of
service but also increases retransmission rate in a reliable connection. More-
over, it results poor actual energy performance due to the retransmissions
or lost packets.

Long end-to-end delay. End-to-end delay becomes long because of a num-
ber of relays in a energy-aware route. It is critical especially in real-time
applications, such as voice over IP (VoIP). In VOIP as well as Multimedia
applications, the packet becomes useless if the delivery of a packet exceeds
the deadline.

To address them, we propose On-Demand Energy-Aware Routing with Lim-
ited Route Length (ODEAR-LRL), which is the distributed approximation of
optimal centralized algorithm. Our evaluation shows that the approximations
perform fairly close to the optimal.

2 Related Work

Energy-aware route can be effective only if appropriate power control MAC is
supported. Power control MAC must be carefully designed as long as RTS/CTS
is maintained for the hidden terminal problem. S. Agarwal et al. designed power-
control MAC on 802.11 and evaluated their proposal in group mobility model
[8]. E.-S. Jung et al. showed that the nodes that cannot correctly listen to RTS
or CTS may interfere the communication with power-control MAC, and pro-
posed their scheme to resolve it [9]. A. Muqattash et al. proposed POWMAC,
which controls transmission power for not only energy saving but also capacity
enhancement, by a new handshaking scheme RTS/CTS/DTS [10].

The energy gain only with power-control MAC is not high enough. The syn-
ergy can be gained from energy-aware routing each link distance of which is
relatively short such that the power control is effective for energy saving. The

On-Demand Distributed Energy-Aware Routing with Limited Route Length 179

energy-aware routing proposals to minimize the transmission power consump-
tion have been proposed, as well, as follows. How to estimate per-link transmis-
sion power is one of the most concerned issues. L. De Nardis et al. proposed
to use UWB ranging scheme [5] while S.-H. Lee et al. proposed received signal
strength[7]. C. Gentile et al. proposed kinetic minimum-power routing which
estimates the projected locations of mobile nodes for power control [11]. As the
complexity of energy-aware routing is high, some approaches have exploited sim-
plicity of cluster in power control [2, 6]. Energy-aware routing emulation scheme
also has been proposed by putting relay nodes in the middle of existing route in
MAC layer by J. Gomez et al. [3].

In the perspective of the whole network, not only total energy must be min-
imize, but also energy consumption must be decentralized to many nodes to
extend the network life time as nodes in the middle of network or on the bottle
neck area may consumes their battery more rapidly. S.-J. Baek et al. proposed
multi-path routing scheme for energy balancing [12]. The hot communication
links can be diffused by communicating through multiple routes between a single
pair of source and destination. To prefer the nodes with more remained battery
life as candidate nodes of routes, M. Maleki et al. proposed a routing scheme
with RREQ piggybacked with each node’s battery information [13]. I. Oh et al.
proposed similar scheme without battery information piggybacking but delayed
RREQ broadcasting for low battery nodes [14]. Some work fully exploits some
nodes powered by AC inlets to minimize the battery consumption by battery
powered nodes [15, 16].

S. Banerjee et al. argued analytically that the route with many relay nodes
do not always perform better with the proper metric including the packet error
recovery efforts in [17]. They showed there is optimal number of relay nodes for
end-to-end retransmission model. A few relay nodes do not exploit the potential
reduction in the transmission energy, while large number of relay nodes cause
the overhead of retransmissions to dominate the total energy budget.

3 Problem Statement

The goal of ODEAR-LRL is to minimize the total transmission power cost not to
exceed a given route length. In this paper, We consider two transmission energy
models of [17] in our proposals: HHR (hop-by-hop retransmission model) and
EER (end-to-end retransmission model).

HHR model assumes that per-link ARQ is intensively used to minimize per-
link packet loss so that per-link packet delivery probability is near one. The total
transmission energy consumed in HHR model is given by

EHHR(X) =
n∑

i=1

E(xi−1, xi) = α

n∑
i=1

dK
xi−1,xi

(2)

where xi is i-th node in the route, di,j is distance between node i and j, and α
is transmission energy coefficient.

180 C. Kim, K. Chang, and J. Ma

In EER model, packets are lost in the middle of end-to-end delivery because
per-link packet drop rate is not negligible. Thus, end-to-end retransmission is
needed to recover the packet loss. The total transmission energy consumed in
EER model is approximately given by

EEER(X) =
α

∑N
i=1 dK

xi−1,xi

(1− pl)N
. (3)

where pl is per-link packet loss rate.
The reason why our approaches limit the number of hops is two folds: (1) Ac-

cording to S. Banerjee’s work [17], there is optimal route length, which minimizes
the total transmission energy regarding retransmission cost in EER model. J.
Bicket et al. insisted that 45% of per-link packet loss rate is reasonable in wire-
less mesh networks [18]. If per-link ARQ (Automatic Repeat reQuest) mecha-
nism is not intensively used, retransmission cost will increase with route length,
nullifying the energy saved by many relay nodes. (2) Moreover, some real-time
applications need to limit the end-to-end delay for the quality of service. Even
though the end-to-end delay is not represented as a function of route length, it
is highly correlated with the route length. Therefore, the delay requirement can
be fairly achieved by the limit of the route length. We describe and formalize
the problems in the following subsections.

Optimal Route Length Regarding Retransmission Cost. In EER model,
retransmission cost increases in super-linear order with respect to route length
where total transmission energy decreases in near inverse proportion. Thus, from
a point of route length, the total transmission energy regarding retransmission
cost starts to increase, and that point will be optimal route length.

In [17], optimal route length can be obtained by

Nopt =
K − 1

− log(1 − pl)
. (4)

Note that the optimal route length depends only on K and pl, not on D. Thus,
the nodes can easily derive the optimal route length with K and pl, which can
be obtained from the communication environment and link status. With known
optimal route length, our algorithm achieves minimum total transmission energy
route in EER model.

Multimedia Application Case. Even in HHR model, our algorithm can be
used to enhance QoS properties of multimedia applications. Most of multimedia
applications have delay constraints due to the real-time and interactive proper-
ties. We suppose that the end-to-end delay is proportional to the route length,
and some measured data in mesh network also shows that the communication
delay is highly correlated with route length [18]. However, S.-T. Sheu et al. have
insisted that longer route length does not directly mean longer delay [19]. The
reason is two folds: (1) longer link will have lower SINR with a fixed transmission
power MAC (2) and the link with longer distance will contend with more nodes

On-Demand Distributed Energy-Aware Routing with Limited Route Length 181

due to the larger interference area. The first fold can be ignored in our work
because we assume that nodes control their transmission powers. The second
one can be significant in the high contention environment. However, Most of ad-
hoc network protocols have QoS-aware MACs, which provide higher priority to
the time-critical applications. For example, applications with high priority can
have shorter inter frame spacing time, or have reserved slot for communications.
Thus, we suppose that the one-hop delay would hardly depends on the link dis-
tance for the multimedia application, when route length inherently affects the
communication delay. With this assumption, we can easily derive the maximum
route length in terms of the time constraints of a certain application.

4 On-Demand Distributed Energy-Aware Route Search
Algorithm with Limited Route Length

Lemma 1. The minimum energy route based with route length limited to h be-
tween node u and v, R̄h(u, v) on HHR model is given by

R̄h(u, v) = [R̄h−1(u, w); v] (5)

such that w minimizes EHHR([R̄h−1(u, w); v]) and (w, v) ∈ E

Proof. Let us represent R̄h(u, v) as [R̂(u, w); v]. Then, the second last node of
the route is w. For a contradiction, we assume that R̂(u, w)
= R̄h−1(u, w). Now,
we have

EHHR(R̄h−1(u, w)) > Etyp(R̂(u, w)). (6)

However, R̄h−1(u, w) is the minimum energy route from u to w with limited
route length (h− 1). As R̂(u, w) must have a route length at most h− 1, Eq. 6
conflicts with the definition of R̄h−1(u, w). ��
Lemma 2. The minimum energy route based on the retransmission-aware en-
ergy model with route length limited to h between node u and v, Rh(u, v) is given
by

Rh(u, v) = [R′; v] where R′ ∈
⋃

(w,v)∈E and 0≤i<h

Ri(u, w) (7)

such that R′ minimizes the total energy cost Eret([R′; v]).

Proof. Assume that Rh(u, v) = [R′; v] and R′ /∈ ⋃
(w,v)∈E and 0≤i<h Ri(u, w).

Moreover, suppose that j is the route length of R′ and R′ is represented as
[u; · · · ; w], so let w be the destination of R′. The assumption can be simplified
as R′
= Rj(u, w) with the definition of j and w. The total energy consumption
based on retransmission-aware energy model of R′ and Rj(u, w′) is given by

EEER([R′; v]) =
Eret(R′)
1− pl

+
αdK

w′,v

(1 − pl)j

EEER([Rj(u, w′); v]) =
Eret(Rj(u, w′))

1− pl
+

αdK
w′,v

(1− pl)j

182 C. Kim, K. Chang, and J. Ma

respectively. EEER([R′; v]) must be smaller than EEER([Rj(u, w′); v]) by the as-
sumption. However, it conflicts with the fact that EEER(R′) > Eret(Rj(u, w′))
by the definition of Rj(·). ��

Lemma 1 and 2 shows that energy-aware route with limited route length can
be calculated from the vectors of energy-aware routes with limited route lengths
and those of their energy values of neighbor nodes. Similar idea has been used
in typical energy-aware routing.

In [7], each intermediate node collects the energy and route information from
RREQ broadcasted by neighbor nodes for minimum consumed power routing
(MCPR). After collecting ‘enough’ information, it broadcasts its own RREQ
with the optimal intermediate route calculated and its energy cost. The broad-
casting wave reaches to the destination, and the destination selects the optimal
one. The dilemma is here, ‘Which node will broadcast RREQ earlier and which
will later?’ Each node collects the route information from the neighbor nodes,
but reversely, it is a neighbor of other nodes. If Node A has listened to the
RREQ of Node B before Node A’s RREQ, Node B would not have listened to
the RREQ of Node A before Node B’s RREQ. The node of early broadcast-
ing cannot listen to the information from the node of later broadcasting before
RREQ. So the order of RREQ broadcasting concludes the order of the nodes in
a resulted route.

MCPR uses a heuristic of ‘the node with less expected power first.’ Each node
predicts the total energy from the source node to itself by the RREQ receiving
time and the receiving power. The RREQ transmission time is decided by ex-
pected total energy. With smaller expected total energy, the RREQ transmission
time becomes earlier. On RREQ transmission, the node piggybacks the predicted
energy and route on its own RREQ packet that it broadcasts [7].

Another heuristic to decide the order, which we can use, is ‘the closer node
from the source node first.’ Since the route is from source to destination a link
with a reverse direction would be rarely helpful. To realize the heuristic the
RREQ transmission time must be decided with predicted distance from the
source node not with the predicted total transmission power. It can be easily
transformed from power to distance by Eq. 1. Other than expected total power,
ODEAR-LRL protocols adopt timer-based broadcasting to serialize the RREQ
transmissions in an order of distances from the sorce node. However, the informa-
tion maintained in ODEAR-LRL is different from that in MCPR. While MCPR
maintains single scalar of energy cost of a minimum energy route, ODEAR-
LRL maintains a vector of energy costs and routes with respect to the route
length based on Lemman 1 and 2. Each node’s operations on RREQ reception
and transmission are described at the end of this section. RECEIVE RREQ is
a procedure on RREQ reception. tx node is a node that has transmitted the
RREQ, rret id is RREQ identifier, cost is the energy cost from the tx node to
the receiver, e v[0 · · ·h] is the energy cost vector from the source to the tx node
and r v[0 · · ·h] is the vector of routes from source to the tx node with respect
to the route length. E(·) would be a cost function of either HHR model or EER
model. TRANSMIT RREQ is a procedure on RREQ transmission except at the

On-Demand Distributed Energy-Aware Routing with Limited Route Length 183

destination node. The destination node is supposed to reply with RREP on
TRANSMIT RREQ because it does not need to rebroadcast the RREQ again.

procedure RECEIVE RREQ(tx node, rreq id, cost, e v[0 · · ·h], r v[0 · · ·h])
Update RREQ tx timer

if not(e vector(rreq id) exists) then
create e vector(rreq id) and
e vector(rreq id)[0 · · ·h]←∞
r vector(rreq id)[0 · · ·h]← ∅

end

for i = 1 · · ·h
total energy ← E(e v[i− 1], cost, i)
if total energy < e vector(rreq id)[i]) then

e vector(rreq id)[i]← total energy
r vector(rreq id)[i]← [r v[i− 1]; tx node]

end
end

procedure TRANSMIT RREQ(rreq id)
if this node is the destination of rreq id then

Transmit RREP with the route r vector(rreq id)[h]
elseif this node is the source of rreq id then

Transmit RREQ with e v[0 · · ·h]← 0 and r v[0 · · ·h] = itself
else

Transmit RREQ with e v ← e vector and r v ← r vertor
end

5 Performance Evaluation

We simulated the ODEAR-LRL on HHR model. Our simulator was developed
on MATLAB 7.1. 200 nodes were deployed in 800 m × 800 m 2-D square. The
communication range of each node is assumed to be 200 m. Mobility and fading
effects other than path-loss were not considered. The routes were assumed to
be built based on the location information of the participating nodes and all
possible pair of source and destination nodes were equally measured.

As shown in Fig. 1 (a), The minimum energy route lengths grow up to 48 hops
in the simulation environment. However, EAR-LRL are shown to have strictly
limited route. Our approach is expected to have good delay bound property for
multimedia applications.

Fig. 1 (b) presents the total energy consumed per route in communication with
typical energy model when α = 1 and K = 4. Each possible route is assumed to
be used once for normalization. As shown, the route with limited route length
of 20 is near optimal, even though its maximum route length is less than a half
of that of minimum energy route. Moreover, the consumed energy with limited
route length of 10 is also competent with significantly shorter route length.

184 C. Kim, K. Chang, and J. Ma

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Route Length

C
D

F

Shortest Hop Route
Minimum Energy Route
Route Length Limited to 5
Route Length Limited to 10
Route Length Limited to 20

(a) The cdf of route length

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Total Transmission Energy

C
D

F

Shortest Hop Route
Minimum Energy Route
Route Length Limited to 5
Route Length Limited to 10
Route Length Limited to 20

(b) The cdf of energy consumed

Fig. 1. The cdf (cumulative distribution function) of route length and energy consumed
in routing with typical energy model when α = 1 and K = 4 in terms of the route
setup algorithms

We simulated ODEAR-LRL assuming log-normal fading. Fig. 2 shows the
average energy inefficiency per route compared with the optimal energy aware
route with limited route length due to the inaccuracy of ODEAR-LRL. We sim-
ulated on 10 different topologies. All possible routes are equally measured. When
RREQ is received, the predicted distance and received power is not accurately
the function of distance because of the log-normal fading. However, communi-
cation energy cost is not assumed to be affected by log-normal fading by the
weak law of large number because the communication quantity is supposed to
be sufficiently large.

There are two reasons of the inaccuracy of ODEAR-LRL: inherent limitation
of on-demand approach and the effect of fading. ODEAR-LRL has inherent
inefficiency because of imperfect information of the neighbors. Each node can
collect the route information of the nodes that are nearer to the source node by
predicted distance. If farther nodes have more efficient route information, the
selected route would be less efficient than the optimal. Moreover, fading also
affects the performance. If a fading variance is larger, the predicted distance
from the RREQ as well as the estimated costs of the routes are more inaccurate.
The figure shows that the effect of fading is much larger than the effect of
RREQ ordering. When standard deviation of RREQ is 10 dB and the route
length limit is 10 (the worst case in our simulation), the average inefficiency
of routes becomes about 0.5 compared with the optimal EAR-LRL routes even
while the inefficiency is less than 5% without fading. Considering the path loss
coefficient K = 4, which needs 16 times larger power for doubled distance, it can
be regarded as reasonably good efficiency, we interpret.

The ratio of failure to make routes by ODEAR-LRL is about 0.015 with route
length limited to 5 and zerowith route length limited to 10 even though the feasible
routes exist. It rarely varies by the log-normal fading. The routing failure ratio
seems to be fairly low even though the resulted routes are not the optimal ones.

On-Demand Distributed Energy-Aware Routing with Limited Route Length 185

0 2 4 6 8 10
0.5

0.75

1

1.25

1.5

Stddev. of log-normal fading (dB)

N
or

m
al

iz
ed

 e
ne

rg
y

to
 th

e
op

tim
al

 E
A

R
-L

R
L

ODEAR-LRL with route length limited to 5
ODEAR-LRL with route length limited to 10
Normalized energy of optimal routes

Fig. 2. The normalized total energy consumed in routes by ODEAR-LRL compared
to the optimal EAR-LRL with respect to the standard deviation of log-normal fading

6 Concluding Remarks

We proposed the on-demand distributed approximation of EAR-LRL protocols
(ODEAR-LRL). It can be used for multimedia applications on ad hoc networks,
which need small energy consumption and low latency together. Moreover, it can
be used to build a energy-aware route based on EER model, as well. The per-
formance results show that ODEAR-LRL makes routes with fairly competitive
energy costs and good delay characteristics. ODEAR-LRL protocols generate
near optimal routes without fading. Even though the resulted routes become
more inefficient with large fading effect, their performance is still up to 1.5 com-
pared with the optimal ones with 10dB standard deviation log-normal fading.

In future, we plan to investigate the effect of mobility. We hopefully wish that
the energy estimation on communication would help the accuracy of the energy
cost estimation. Route vector caching is also considered for accuracy and route
setup efficiency.

References

[1] ElBatt, T.A., Krishnamurthy, S.V., Connors, D., Dao, S.: Power Management for
Throughput Enhancement in Wireless Ad-Hoc Networks. In: Proc. of IEEE ICC
2000. (2000)

[2] Kwon, T.J., Gerla, M.: Clustering with Power Control. In: Proc. of the 18th IEEE
MILCOM. (1999)

186 C. Kim, K. Chang, and J. Ma

[3] Gomez, J., Campbell, A.T., Naghshineh, M., Bisdikian, C.: Conserving Trans-
mission Power in Wireless Ad Hoc Networks. In: Proc. of the 9th IEEE ICNP.
(2001)

[4] Toh, C.K.: Maximum Battery Life Routing to Support Ubiquitous Mobile Com-
puting in Wireless Ad Hoc Networks. IEEE communications Magazine (2001)

[5] De Nardis, L., Giancola, G., Di Benedetto, M.G.: A power-efficient routing met-
ric for UWB wireless mobile networks. In: Proc. of IEEE 58th VTC 2003-fall.
Volume 5. (2003) 3105–3109

[6] Gentile, C., Haerri, J., Dyck, R.E.V.: Kinetic Minimum-Power Routing and Clus-
tering in Mobile Ad-Hoc Networks. In: Proc. of IEEE 56th VTC 2002-fall. Vol-
ume 3. (2002) 1328–1832

[7] Lee, S.H., Choi, E., Cho, D.H.: Timer-based broadcasting for power-aware routing
in power-controlled wireless ad hoc networks. IEEE Communications Letters 9
(2005) 222–224

[8] Agarwal, S., Krishnamurthy, S.V., Katz, R.H., Dao, S.K.: Distributed Power
Control in Ad-hoc Wireless Networks. In: Proc. of the 12th IEEE Int’l Symp. on
PIMRC. (2001)

[9] Jung, E.S., Vaidya, N.H.: A Power Control MAC Protocol for Ad Hoc Networks.
Wireless Networks 11 (2005)

[10] Muqattash, A., Krunz, M.: A Single-Channel Solution for Transmission Power
Control in Wireless Ad Hoc Networks. In: Proc. of the 5th ACM Int’l Symp. on
MobiHoc. (2004)

[11] Gentile, C., Van Dyck, R.E.: Kinetic Spanning Trees for Minimum-Power Routing
in MANETS. In: Proc. of IEEE 55th VTC 2002-spring. Volume 3. (2002)

[12] Baek, S.J., de Veciana, G.: Spatial energy balancing in large-scale wireless multi-
hop networks. In: Proceedings of IEEE INFOCOM 2005. (2005)

[13] Maleki, M., Dantu, K., Pedram, M.: Power-aware Soure Routing Protocol for
Mobile Ad Hoc Networks. In: Proceedings of the 2002 Int’l Symp. on Lowpower
Electronics and Design. (2002)

[14] Garcia, J.E., Kallel, A., Kyamakya, K., Jobman, K., Cano, J.C., Manzoni, P.:
A Novel DSR-based Energy-efficient Routing Algorithm for Mobile Ad-hoc Net-
works. In: Proceedings of IEEE VTC 2003-Fall. (2003)

[15] Lindgren, A., Schelén, O.: Infrastructured ad hoc networks. In: Proceedings of
the 2002 Int’l Conf. on Parallel Processing Workshop. (2002)

[16] Oh, I., Choi, J.: A Pseudo Base Station based Algorithm for Power Aware Routing
in UWB Ad Hoc Networks. In: Proceedings of ICCS 2004. (2004)

[17] Banerjee, S., Misra, A.: Minimum Energy Paths for Reliable Communication in
Multi-hop Wireless Networks. In: Proc. of the 3rd ACM Int’l Symp. on MobiHoc.
(2002)

[18] Bicket, J., Aguayo, D., Biswas, S., Morris, R.: Architecture and Evaluation of an
Unplanned 802.11b Mesh Network. In: Proceedings of ACM MobiCom ’05. (2005)

[19] Sheu, S.T., Chen, J.: A novel delay-oriented shortest path routing protocol for
mobile ad hoc networks. In: Proc. of IEEE ICC 2001. (2001)

Automatic Data Locality Optimization Through
Self-optimization

Rainer Buchty, Jie Tao, and Wolfgang Karl

Universität Karlsruhe (TH), Institut für Technische Informatik, 76128 Karlsruhe, Germany
{buchty, tao, karl}@ira.uka.de

Abstract. Data locality optimization in parallel systems is a non-trivial task.
This task is typically done by the programmer: based upon an exhaustive analysis
of an application’s run-time behavior, data access and distribution is re-modeled
manually. Once the system, application, or just the input data set changes this
effort has to be repeated.

Ideally, this task can be automated which requires introduction of Self-X quali-
ties into the system. We developed an architecture concept for self-organizing par-
allel computer systems. This architecture is based on two main principles which
are flexible monitoring to instantiate self-awareness, and adaptive components for
all aspects of self-configuration. It is completed by a self-awareness mechanism,
the autonomic planning. These Self-X properties pervade all system layers.

Based on this architecture concept, we implemented an autonomic data lo-
cality optimization system. With the achieved results presented in this paper we
successfully demonstrated suitability and applicability of the architecture concept
and were able to highlight the benefits of autonomic data locality optimization.

1 Introduction and Motivation

Past prognoses always saw Moore’s Law as the ultimate barrier for future system devel-
opment. However, in modern systems the complexity has risen to an amount where not
physical constraints but the complexity itself turns into a problem. While it is possible
to build such complex systems, maintenance and especially application optimization
are increasingly difficult to handle by humans.

Because of growing system complexity combined with increasing usability and reli-
ability requirements, such tasks should be fulfilled automatically, i.e. the systems with
self-organizing characteristics and capabilities are mandatory. In general, such systems
require introspection to acquire system-wide state-information to tune for desired per-
formance, energy consumption, reliability, security, or other metrics. In a typical self-
organizing system, a monitor probe will acquire state, and then a steering component
will adapt the system – either dynamically at runtime, or statically as in profile directed
feedback techniques for future executions.

This requires flexible and powerful monitoring resources on all system layers. It is
vital to avoid restriction to some few monitoring points as present in current systems:
by extending monitoring to all system layers, it is possible to exploit emergence effects
contributing to improved self-awareness.

Based on this data, a more suitable (i.e. optimized) system configuration can be de-
termined. This requires presence of adaptive components on all system layers which

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 187–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

188 R. Buchty, J. Tao, and W. Karl

then supply necessary reconfiguration capabilities. Amount of reconfiguration is deter-
mined by analysis of monitoring data and evaluation against given rules or problem
specifications, so-called objective functions.

Objective functions describe the wanted, optimal system behavior. Because of their
often contradictory nature, weighing these objective functions is a non-trivial task, and
therefore different approaches and strategies exist to achieve what is considered the
“optimal” solution. This weighing process is based on application type, field of use,
and additional system conditions. Further complexity is added from the fact that objec-
tive functions are not necessarily one-dimensional but can also be multi-dimensional,
aggregate functions.

We developed an architecture concept, ASoCS, which specifically supports design
and programming of self-optimizing parallel and distributed computer systems. As
a case study for using this architecture concept, we implemented an automatic data
locality optimization based on the ASoCS concept. Data locality optimization is a
well-known problem within the field of parallel programming: based upon an exhaus-
tive analysis of an application’s run-time behavior, data access and distribution is re-
modeled manually. Once the system, application, or just the input data set changes
this effort has to be repeated. With our exemplary implementation we were able to
demonstrate suitability and applicability of this concept and highlight the benefits of
autonomic data locality optimization.

This paper is organized as follows: in Section 2 we present related approaches re-
garding the introduction of autonomous features, so-called Self-X capabilities such as
Self-Awareness or Self-Optimization, for system and application design. We then intro-
duce the ASoCS framework in Section 3 followed by an exhaustive discussion of our
exemplary implementation of an autonomic data locality optimizer based on ASoCS
principles in Section 4. The paper concludes with Section 5.

2 Related Work

Data locality optimization requires sophisticated system introspection by using various
monitoring techniques. That way data access patterns and frequencies can be detected,
which allow better use of local memory and cache resources.

The ASoCS concept was specifically designed to aid such introspection by a pow-
erful monitoring concept explained in Section 3. Monitoring is able to not only gather
data from various system layers, but also capable of processing, interpretation, and eval-
uation against given objective functions already in place without necessarily requiring
a central post-processing instance.

In adaptive systems, this data serves to compute a possible, more suitable system sta-
tus resulting in a system reconfiguration affecting all system layers. This optimization
process ideally runs automatically without human interaction, i.e. the system turns into
what is typically called an autonomic system.

Certain aspects of the above problems have been targeted in current and previous
research activities and industrial initiatives. Within this section activities involving au-
tomatic optimization are discussed.

Automatic Data Locality Optimization Through Self-optimization 189

Initiatives Targeting Autonomic Computing. IBM’s Autonomic Computing (AC)
initiative [15] targets automated system administration without need for human inter-
action. The initiative covers performance, energy efficiency, reliability, and security
[34,35]. To achieve this goal, a system is partitioned into several components: Tivoli
Monitoring [17] monitors the most important system resources. Collected data is eval-
uated against an optimizing objective function; this is done by the Business Workload
Manager (BWLM).

Within their AC initiative, IBM already implemented self-repairing and query-opti-
mizing components for their DB2 relational database. The query optimizer is part of
IBM’s Learning Optimizer (LEO) and was developed for the Smart Managing and
Resource Tuning (SMART) database technology project. Additional servers, based on
the eLiza project [16], are able to automatically manage computing and memory re-
sources. Another part of this project is Enterprise Workload Management (eWLM),
which among other features will enable performance self-optimization.

Similar initiatives exist, such as Sun Microsystems’ Network Virtualization Strategy
(N1) for dynamic allocation of network resources [28], or Hewlett-Packard’s Planetary
Computing project [4]. The latter is an architecture enabling supercomputing centers
to automatically reconfigure software infrastructure, and assign needed memory and
server resources.

In addition to the already mentioned industrial projects, numerous academic projects
exist such as UC Texas’ EDGE architecture [9] or the adaptive software from Michigan
State University [10].

Common to all approaches is their limited scope resulting from the addressed sce-
nario, automated system administration. Only certain applications, like database op-
timization or data storage, are addressed. Furthermore those approaches are usually
targeting higher system levels and leave out low-level optimization on hardware level.

Feedback Systems. Feedback loops are e.g. used in real-time systems for industrial and
automotive control: input data provided by sensors is collected and evaluated. Based on
evaluation result, appropriate control takes place. Such feedback loops are prerequisites
for self-organizing systems.

Current research interest is typically put on adjusting computing power and energy
efficiency. Here, for instance, IPC count is used as a measure to adjust issue width and
number of functional units [7]. Another approach is using miss ratio, IPC count, and
jump ratio for detection of execution phases with intent to reconfigure caches and TLBs
to optimally match phase requirements [3].

Another project, described in [23], targets the memory subsystem by measuring how
much time elapses between consecutive accesses to an energy-aware memory. Based
hereon, appropriate power mode and most energy-saving page allocation are determined.

Similar to monitoring systems, again a multitude of solutions exists, each targeting
a special area. A generic and flexible architecture could be used as an universal frame-
work for all types of feedback systems. In addition, feedback systems as described
above greatly benefit from a system-wide monitoring infrastructure providing supple-
mental data.

Monitoring. Feedback systems as introduced in the previous section require techniques
to gather and process system parameters to be able to create a certain sense of self-

190 R. Buchty, J. Tao, and W. Karl

awareness. These parameters can be collected on various system levels such as lowest
hardware level, driver level, OS level, or application level.

On lowest hardware level, performance counters offer some rudimentary monitor-
ing support. They are typically used to profile an application and investigate possible
application optimizations such as enhanced data layout in memory to improve cache
use. Modern processor architectures offer so-called event counter registers
[1,8,19,20,30,18,29]. Number and use of these registers are dependent on the individ-
ual architecture: counter registers are either bound to certain events or can be more or
less freely assigned [29,19]. The majority of existing tools is based on these counter
registers.

Counter-based methods typically suffer from basic limitations [37], and do not al-
low differentiation between events being triggered by speculative and non-speculative
execution. False counts from speculation are addressed with the precise event-based
sampling (PEBS) of Intel’s Pentium 4 architecture [20,36]. Similar, but less complex
methods are implemented in the IBM’s Power architecture [30,18].

For architectures without such hardware support, monitoring can be achieved using
plain software. For example, gprof [11] uses compiler-generated function prologues
to log information such as called address and number of calls. To collect statistical
information and enable mapping of execution times to functions, gprof periodically
parses the program counter.

It is also possible to embed monitoring routines on driver level as demonstrated by
the Myrinet-based Shrimp Cluster [24]. A combined hardware/software method was
used on the SMiLE monitor for SCI networks [14].

Monitoring APIs as described in [32], [2], or [25,26], decouple monitoring devices
from post-processing software by offering an abstract programming interface rather
than directly accessing the monitoring hardware.

The drawbacks of the above examples can be subsumed as follows: not only are ex-
isting monitoring infrastructures in hardware inherently fixed, they are typically very
application-specific. In addition, no standardized, generic API exists to work with mon-
itoring infrastructures. So far, several approaches for monitoring APIs exist, However,
these are typically bound to certain application such as e.g. monitoring parallel systems
[25,26,27].

An approach into this direction was taken within the APART project [13] and the
associated EP-Cache project [12]. These, however, only target monitoring and analysis
in parallel and distributed systems. With respect to self-organizing systems, still no
uniform, application-independent, and standardized monitoring API exists including
reporting existing monitoring resources, permitting access to these resources, and –
regarding self-organization – enabling reconfiguration.

3 The ASoCS Architecture Concept

The data locality optimization (DLO) implementation closely follows the ASoCS archi-
tecture concept. This concept was previously presented in [6], therefore in this section
we give a quick overview over our architecture as required to understand how the ex-
emplary DLO implementation makes use of the concept.

Automatic Data Locality Optimization Through Self-optimization 191

3.1 Architecture Details

Integral part of the proposed architecture concept is a novel monitoring infrastructure.
As previously explained, monitoring must take place on all system layers. It further-
more must be flexible to adhere to demands of the planning stage which computes
necessary system reconfiguration according to monitoring data. To achieve this, moni-
toring will not be a monolithic part of respective system layers. Instead, it will be split
into monitoring capsules and monitoring modules.

Monitoring capsules are embedded into all system layers and provide appropriate
interfacing required to dock or plug monitoring modules into the respective layer. Mon-
itoring modules represent the monitoring functionality consisting of the sensory part
(data pickup) and defined pre-processing capabilities. Splitting the monitor resources
into capsule (interface) and module (functionality) enables exchange of monitoring
modules, thus the monitoring infrastructure itself can be reconfigured depending on the
planning stage’s needs. Monitoring modules will be stored in a repository from where
they can be retrieved and docked into the appropriate monitoring capsule.

A dedicated API will serve as an abstraction layer and enable access to monitor-
ing capsules and adaptive components by other system services such as the adaptive
planning stage. This stage decides which monitoring modules are loaded into their re-
spective capsules.

Data collected by the monitoring infrastructure will be buffered in a local perfor-
mance repository. This data can be merged with other local data from additional system
nodes resulting in a global performance manager enabling scalability of the entire per-
formance repository system. A dedicated query interface provides access to all local
performance repositories and the monitoring infrastructure.

This query interface is used by the adaptive planning stage which evaluates col-
lected data against objective functions to determine appropriate system reconfiguration.
This evaluation is based on certain metrics quantizing system parameters and objective
functions; when adapting this architecture to distinct application, it is necessary to in-
vestigate and evaluate existing metrics for use in adaptive planning and to eventually
develop novel metrics aiding in the evaluation process where needed.

The overall architecture concept basically enhances and refines a common control
loop scheme: a system is split into a 5-tier hierarchical scheme: the bottom layer is
formed by the system hardware, with the (Real-time) Operating System (OS) includ-
ing hardware drivers on top. The OS is assisted by libraries which in term are required
by the compiler to finally create the desired application. Depending on its type, an ap-
plication might influence only some or all levels. On each hierarchy level monitoring
capsules exist. These capsules can be loaded with monitoring modules stored in a mon-
itoring repository. Data collected and preprocessed by monitoring modules are stored
in a local performance repository.

The architecture concept explicitly addresses parallel and distributed systems: local
repositories of all system nodes can be retrieved by a global repository manager (GRM).
This GRM is virtually centered between the local repositories of all nodes. Repositorys
are accessed by the adaptive planning stage (APS) through a dedicated query interface.
APS then evaluates this data and determines required reconfiguration. To enable such

192 R. Buchty, J. Tao, and W. Karl

reconfiguration, each hierarchy level contains adaptive components which are instru-
mented by APS.

In Section 2 several projects and initiatives were presented which more or less ex-
haustively target such closed control loop systems. So far, none of them addresses a
uniform architecture for self-organizing or organic architectures, but rather focuses on
certain applications or system aspects. Contrary to these, our concept is application- and
system-independent, and addresses all system layers rather than specific system para-
meters. It is furthermore applicable to single nodes as well as parallel and distributed
systems.

When applying the architecture concept, methods for data evaluation and compu-
tation of system reconfiguration based on monitoring data, objective functions, and
additional data such as amount of possible reconfiguration must be investigated and
developed with respect to the given application scenario. This also includes evaluation
of existing metrics and eventually developing of novel metrics to be able to quantize
requirements and reconfiguration efforts as required by the target application scenario.

4 Prototypical Implementation with Data Locality as Initial
Objective Function

In order to evaluate the ASoCS concept, we built a prototypical architecture and devel-
oped several components for a feedback loop with respect to data locality optimization
on NUMA architectures. The reason for choosing NUMA locality as the initial objec-
tive function lies in the fact that we have been doing research work in the area of shared
memory programming on top of NUMA architectures [33].

A typical NUMA (Non-Uniform Memory Access) machine is comprised of several
commodity PCs or workstations connected through modern interconnection technolo-
gies. On such a machine, the main memory is distributed over the system, but globally
organized into a shared virtual memory accessible from all processor nodes. Due to the
different property of local and remote memory accesses, however, references targeting
a remote memory can take up to two orders of magnitude longer than local accesses.
As a consequence, unoptimized applications often suffer from poor data locality and
the resulting high memory access latencies. As the first step towards self-organizing
computer systems, we tackle this locality issue on NUMA machines.

4.1 Structure of the Feedback Loop

Figure 1 depicts how we map this problem onto the general framework of ASoCS. First
of all, such data locality optimization needs a set of system parameters such as memory
access distribution and remote access characteristics. we assume Monitoring Capsules
(MC) integrated in the NUMA network interface capable of observing all remote mem-
ory transaction. On top of these MCs, we use low-level APIs for preprocessing the
original monitoring data. For each MC, a Data Buffer is maintained for storing the local
monitoring information. From there, data is aggregated and combined into the Global
Database. This work is done by the OMIS/OCM [40] monitoring interface. Besides,

Automatic Data Locality Optimization Through Self-optimization 193

CPU

Memory

Cache

CPU

Memory

Cache

Interconnection Network

Database
Global

Low−level API

Data Buffer Data Buffer

request
Adapting Adapting

Low−level API

ARS: Data Analyzer & Migration Component

OMIS/OCM

OMIS/OCM

MC MC

Fig. 1. Memory Locality Adapting on NUMA Systems

OMIS/OCM also provides a Query Interface that delivers the memory locality infor-
mation to higher levels. Finally, an Adaptive Planning and an Adaptive Component are
needed for self-tuning. The former is implemented with a Data Analyzer that automat-
ically analyzes the runtime interconnection traffic and detects access hot spots, while
the latter is achieved with a Migration Component that transparently modifies the data
layout via moving data to its dominating node.

Monitoring Capsule: The design of this component is based on the SMiLE hardware
monitor [22] which has been developed for observing the interconnection traffic on the
SMiLE (Shared Memory in a LAN Environment) cluster connected via the Scalable Co-
herent Interface (SCI), a low-latency, high-bandwidth interconnection technology. For
acquiring comprehensive data about the inter-node communication, we designed two
analysis modules for monitoring the memory transaction: static and dynamic. The for-
mer allows to explicitly program the hardware for event triggering and action process-
ing on special memory regions of interest, while the latter is based on histogram-driven
monitoring, in which all memory transactions through the local interconnect bus are
monitored in order to provide fine-grain monitoring statistics across the complete ap-
plication’s working set.

A hardware Monitoring Capsule is also designed to hold these analysis modules,
which can be dynamically loaded into the capsule at the runtime. The capsule imple-
ments two interfaces: a link interface and a PCI interface. The former is used to snoop a
local bus, which connects a single node to the actual interconnection fabric, and extract
information from the transactions delivered over this bus, while the latter, an interface
between the PCI bus and the monitor, offers direct access to the host node enabling
the users or system software to configure the hardware monitor and read the gathered
monitoring data.

194 R. Buchty, J. Tao, and W. Karl

Low-level API and the Data Buffer: In order to avoid delivering fully detailed moni-
toring data which is not essential for further use, we implemented a library of functions
for data processing. This PAPI-like [5] standard API contains a set of routines capa-
ble of generating statistical information in the form of e.g. memory access histograms
that show the number of accesses from all processor nodes to the whole working set at
different granularity. These histograms can be used to detect communication bottle-
necks where required data is mainly acquired from a remote processor node. For lo-
cally storing this monitoring data a Data Buffer is maintained on each processor. The
buffer is organized as a histogram chain in order to enable fast searching of the needed
information.

Data Aggregation and Querying Interface: We use the OMIS/OCM [39] monitoring
system to combine monitoring data from all nodes. OMIS (On-line Monitoring Inter-
face Specification) is a specification of an interface between a programmable on-line
monitoring system for distributed computing and the tools that reside on top of it. It
offers two interfaces: one for the interaction with different tools and the other for the
interaction with the program and runtime system layers. OCM is an OMIS Compliant
Monitoring system adhering to OMIS. It has been implemented for a series of loosely
coupled environments including clusters and NoWs and has initially been designed for
message passing tools. It is structured into a core and several extensions. For this work
we extended OCM for providing services with respect to the access of data delivered by
the Monitoring Capsules. Further, we extended OCM with a high-level Query Interface
that provides the memory locality information to higher levels.

Adaptive Planning and Component: The remainder components include a Data An-
alyzer (Adaptive Planning) and a Migration Component (Adaptive Component). The
former is used to analyze the monitoring data and determine whether to move a data
page to another processor node. Based on the Querying Interface, the Data Analyzer
is capable of accessing the memory access histograms created by the low-level API.
It then compares the number of accesses to a data page from all processor nodes. If
the accesses performed by a remote node exceed a predefined threshold, it is decided
to move this page to the remote node. This decision is then delivered to the Migration
Component, which uses system calls to move the data from the original location to the
node that more requires it. This kind of adapting is performed periodically either at
specified time or by synchronization points, and is held during the whole execution of
the applications.

A critical issue with this approach is the migration algorithm used to make the mi-
gration decision. Commonly used page migration mechanisms are based on competitive
algorithms, which migrate a page if the difference between the number of local refer-
ences and the number of remote references concerning one node exceeds a predefined
threshold. A similar one, called U-Mig, is also proposed within this work. As the lo-
cal accesses can not be acquired by the monitors, the migration decision is based on
the references performed by all remote nodes on the page under consideration. If the
difference between the number of the remote accesses from the dominant node and the
average remote accesses performed on the page exceeds a threshold, it is decided to
move the page to the dominant remote node.

Automatic Data Locality Optimization Through Self-optimization 195

Using this algorithm, however, a correct decision can be made only after a large
amount of references have been issued, resulting in late migrations and thereby a loss
of performance. Therefore, We implemented several novel migration algorithms, which
base their analysis on memory references to multiple shared pages, in a way that the
accesses to a set of pages are combined using a weighted distribution.

An example is the so-called W-Mig scheme that uses the number of relative refer-
ences to decide the location of a page. The number of relative memory accesses to page
P from node N is calculated as the sum of weighted references from the same node to
the pages spatially neighboring page P , using the following formula:

RPN =
n∑

i=0

WiCi

In this formula, Wi is a weight representing the importance of the ith page to page
P and Ci is the number of references to page i, while n is the number of pages located
on node N . The weight is assigned according to the distance of a page to page P ,
whereby a closer page is assigned with a higher weight due to the spatial locality of
memory accesses. Besides that, the neighborhood is restricted to the pages located on
the same node of page P , since only these pages see the same remote nodes and hence
their monitoring information includes the accesses from all P ’s remote nodes. For any
page located on another node, while a remote node seen by P is a local node, no access
information from this node can be acquired.

Table 1. Description of benchmark applications

Application Description Working set size
FT Fast Fourier Transformations 64×64×64
LU LU-decomposition for dense matrices 32×32×32
MG Multigrid solver 32×32×32
CG Grid computation and communication 1400
RADIX Integer radix sort 262144 keys
OCEAN Simulation of large scale ocean movements 130×130
WATER Evaluation of water molecule systems 343 molecules
SOR Successive Over Relaxation 1024 × 1024
Gauss Gaussian elimination 512 × 512

To determine the location of a page, the numbers of relative references from all
remote nodes are compared. If the difference between the number of relative accesses
from the dominant node and the average relative accesses exceeds a threshold, it is
decided to move the page to the dominant remote node. The advantage of this algorithm
comes from the fact that theoretically spatially neighboring pages have similar access
behavior due to the spatial locality of memory accesses. This means that if a node
predominately accesses a page, it is also likely to access its neighboring pages in the
same way. Therefore, the behavior of neighboring pages can be used to determine the
location of this page. The benefit is that, based on the higher number of accesses, a
migration decision can be made earlier.

196 R. Buchty, J. Tao, and W. Karl

Summary: Overall, we implemented a closed feedback loop for adapting the data dis-
tribution on NUMA systems. At the same time, we also established the basis framework
of the proposed architecture. Most components within this framework can be applied to
build other feedback loops with slight extension. For example, we are currently work-
ing on an adaptation disk for improving the cache performance. Monitoring data is
acquired from performance counters; the established databases and Query Interface are
directly applied; the existing Adaptive Planning component is slightly extended; and a
new Adaptive Component is under development.

4.2 Experimental Results

The prototypical implementation of the proposed architecture has been verified with
standard applications. In this subsection, we discuss the achieved results.

Experimental Setup: Since the hardware Monitor Capsules are not yet available, we
created a simulation environment based on SIMT [38]. SIMT is a multiprocessor simu-
lator modeling the parallel execution of shared memory applications on NUMA
machines. As it aims at research work on the memory system, SIMT contains mainly
mechanisms for simulating the complete memory hierarchy in detail. This includes a
flexible cache simulator which models caches of arbitrary levels and various cache
coherence protocols, a DSM simulator which models the management of distributed
shared memories and a set of data allocation schemes, and a network mechanism mod-
eling the interconnection traffic. For this experiment, we extended SIMT to model the
Data Analyzer and the Migration Component. We also implemented the Monitoring
Capsule within SIMT, including all interfaces for dealing with memory references pro-
vided by SIMT and configuration information from the user.

Benchmark Applications: The established prototype was evaluated with several
OpenMP applications (FT, LU, MG, CG) from the NAS parallel benchmark suite [21],
a few codes (RADIX, OCEAN, WATER) from the SPLASH-2 benchmark suite [41],
and two self-coded kernels (SOR, GAUSS). A short description and the used working
set size of these applications are shown in Table 1.

Adaptation Effect: First, we compared the parallel execution time with three ver-
sions: transparent (original), manual optimized, and self-tuned. The optimized version
is achieved by manually specifying data allocations in the source code, based on the ac-
cess pattern of applications presented by an existing data visualizer. This visualizer [31]
presents the access pattern of applications in understandable graphical views, providing
guidance towards an improved memory locality.

Figure 2 shows the experimental results on a 32-node NUMA system with a local
access latency of 150 CPU cycles and a remote access latency of 1500 cycles. Overall,
both optimized and self-tuned versions perform better than the transparent execution,
with the manual optimization generally better than self-adaptation. The best perfor-
mance was achieved with the manually optimized version of SOR (a small code used
for iteratively solving partial differential equations), where a performance gain of fac-
tor 1.89 has been observed. This can be explained by the fact that manual optimization
introduces an initial correct data layout and results in no runtime overhead. However,
WATER is an exclusion, with which self-tuning outperforms manual optimization. This

Automatic Data Locality Optimization Through Self-optimization 197

Fig. 2. Simulated execution time (in million CPU cycles) of tested applications in different ver-
sions

is caused by the dynamic access pattern of WATER, which renders that static optimiza-
tion, which places data on fixed nodes, does not suit for the changing access behavior
where data is alternately accessed by several processors.

Comparison of Migration Algorithms: In order to evaluate the novel migration
schemes, we simulated all applications with different migration algorithms enabled.
Besides U-Mig and W-Mig described in the previous section, we also simulated an L-
Mig algorithm in order to examine the impact of information about local references and
to evaluate the other schemes. L-Mig assumes the awareness of local accesses which
can be acquired by the simulation system. In this case, the number of the dominant ac-
cesses will not be compared with the average accesses as it is the case of U-Mig, but
with the local references.

The result is summarized in Figure 3. The y-axis gives the improvement of each mi-
gration version to the transparent version. This is calculated via dividing the execution
time with transparent version by the execution time with a kind of migration enabled.

Examining U-Mig and W-Mig it can be observed that, as expected, W-Mig performs
better in case of CG, OCEAN, WATER, and GAUSS. For others, both algorithms be-
have similarly. The gain in performance with W-Mig is caused by more migrations
which were shown by the number of migrations provided by the simulation system. It
was also found that these migrations are performed in the earlier phase of the program’s
execution. Programs thereby benefit from the local references that would be remote if
no migration was performed, despite the overhead introduced by the migrations.

Comparing U-Mig and W-Mig with L-Mig, it can be noted that the distance between
the results of migration with or without local access information is insignificant. In
some cases, like for RADIX, W-Mig is even better. According to the migration behavior
shown by the simulator, both U-Mig and W-Mig rarely migrate a page mainly accessed
by the local node to a remote node, even though the information about local references
is not available. Hence, they introduce comparable performance to those algorithms
which have knowledge about local accesses.

198 R. Buchty, J. Tao, and W. Karl

Fig. 3. Comparison between different migration algorithms

Threshold Adapting: As mentioned, we use a threshold to determine whether a page
should be migrated. However, it is difficult to choose an adequate threshold for all
applications. Depending on the access pattern of individual application, this threshold
can be large or small in order to make correct migrations without causing performance
loss. In this case, we deploy an adaptive threshold which can be dynamically adjusted
according to the runtime execution behavior: if excessive migrations are performed,
the threshold is lowered; if excessive remote accesses are observed, the threshold is
increased.

In order to evaluate this approach, we tested the execution behavior of several ap-
plications with different thresholds. For comparison, we selected other three constant
thresholds which are individually defined as 1.5, 2, and 3 factors of the average refer-
ences performed on a page. Figure 4 presents the experimental results and illustrates
the simulated execution time versus the threshold.

0

20

40

60

80

100

120

FT LU RADIX WATER SOR

S
im

u
la

te
d

 e
xe

cu
ti

o
n

 t
im

e
(i

n
 m

ill
io

n
 c

yc
le

s)

Factor-1.5

Factor-2

Factor-2.5

Adaptive

Fig. 4. Execution time of applications with adaptation using different thresholds.

Automatic Data Locality Optimization Through Self-optimization 199

Examining the constant thresholds, it can be seen that applications behave differently,
with FT and LU presenting a better performance by factor 1.5, WATER and RADIX a
better performance by factor 2, and SOR showing no significant change with varying
factors. This result means that no constant threshold is optimal with respect to various
applications.

For the adaptive threshold, however, it can be seen that all applications show a good
performance, either the same with or only slightly worse than the best performance
acquired by the optimal threshold factor for an individual application. This again proves
the necessity of self-adaptation.

5 Conclusion

In this paper we presented an autonomic method of data locality optimization in parallel
and distributed systems. This implementation was modeled upon our ASoCS architec-
ture concept, proving the general applicability of that concept.

The need for automated optimization was discussed in the Section 1 where it was
shown that future systems must employ self-optimization capabilities to overcome cur-
rent limitations resulting from increased system complexity.

Section 2 presented an overview over related work addressing autonomic systems
and how these are used to achieve self-optimization in their specific field of use. It
was furthermore noted, that – different to our ASoCS concept – these existing concepts
typically either address only certain aspects of autonomic computing or are inherently
limited to dedicated applications and application scenarios.

In Section 3 we presented an overview over the ASoCS concept. The applicabil-
ity of this concept was demonstrated by a prototypical implementation targeting data
locality on NUMA systems described in 4. It was shown, how the locality optimizer
was modeled after the ASoCS concept, and simulation results for various benchmark
applications were presented to compare static (manual) optimization and adaptive (au-
tomatic) optimization.

The presented results are promising and show, although manual optimization is able
to achieve better results in some cases, that on average adaptive optimization is already
on par with manual optimization. With the help of presented and additional results we
expect to further improve the adaptive optimization process.

References

1. AMD. AMD Athlon processor, x86 Code Optimization Guide. 2002.
2. J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger, S.-T.A. Leung, R.L.

Sites, M.T. Vandevoorde, C.A. Waldspurger, and W.E. Weihl. Continuous profiling: Where
have all the cycles gone? In Proceedings of the 16th ACM Symposium on Operating Systems
Principles, Oct 1997.

3. R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas. Memory hierar-
chy reconfiguration for energy and performance in general-purpose processor architectures.
In Proceedings of the International Symposium on Microarchitecture, Dec 2000.

4. Jamie Beckett. Scaling IT for the Planet: Creating the worldwide computing utility.
http://www. hpl.hp.com/news/2001/oct-dec/planetary.html.

200 R. Buchty, J. Tao, and W. Karl

5. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming inter-
face for performance evaluation on modern processors. The International Journal of High
Performance Computing Applications, 14(3):189–204, Fall 2000.

6. Rainer Buchty, Georg Acher, Jürgen Jeitner, Wolfgang Karl, Jie Tao, and Carsten Trinitis.
ASoCS: An Architecture Concept for Self-optimizing Parallel and Distributed Computer
Systems. PARS Newsletter, 22:108–117, Dec 2005. ISSN 0177-0454.

7. E. Chi, M. Salem, I. Bahar, and R. Weiss. Combining software and hardware monitoring for
improved power and performance tuning. In Boston Area Architecture Workshop (BARC)
2003, Jun 2003.

8. Compaq Computer. Alpha 21264 Microprocessor Hardware Reference Manual.
9. Doug Burger et al. Scaling to the End of Silicon with EDGE Architectures. In IEEE Com-

puter, pages 44–55, Jul 2004.
10. Philip K. McKinley et al. Composing Adaptive Software. In IEEE Computer, pages 55–65,

Jul 2004.
11. J. Fenlason and R. Stallman. GNU gprof: The GNU Profiler. 1997.
12. Michael Gerndt and Wolfgang Karl. EP-Cache. February 2005. http://wwwbode.

cs.tum.edu/ gerndt/home/Research/EP-Cache/EPcache.htm.
13. APART IST Working Group. Automatic Performance Analysis: Real Tools. 2004.

http://www.kfa-juelich.de/zam/RD/coop/apart/.
14. Robert Hockauf, Wolfgang Karl, Markus Leberecht, Michael Oberhuber, and Michael Wag-

ner. Exploiting Spatial and Temporal Locality of Accesses: A New Hardware-Based Moni-
toring Approach for DSM Systems. In David Pritchard and Jeff Reeve, editors, Euro-Par’98
Parallel Processing, 4th International Euro-Par Conference, Southampton, UK, September
1-4, 1998 Proceedings, volume 1470 of Lecture Notes in Computer Science, Berlin, Septem-
ber 1998. Springer Verlag.

15. Paul Horn. IBM’s Perspective on the State of Information Technology. http://www.
research.ibm.com/autonomic/manifesto.

16. IBM. Autonomic Computing Web Page. http://www.ibm.com/servers/
autonomic/.

17. IBM. Tivoli Software Web Page. http://www.ibm.com/software/tivoli/.
18. IBM. PowerPC 740/PowerPC 750 RISC Microprocessor User’s Manual. 1999.
19. Intel. Intel Itanium Architecture Software Developer’s Manual. 2000.
20. Intel. Intel Architecture Software Developer’s Manual Volume 3: System programming

Guide. 2002.
21. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel Benchmarks

and Its Performance. Technical Report NAS-99-011, NASA Ames Research Center, October
1999.

22. W. Karl, M. Leberecht, and M. Oberhuber. SCI Monitoring Hardware and Software: Sup-
porting Performance Evaluation and Debugging. In SCI Scalable Coherent Interface Ar-
chitecture and Software for High-Performance Compute Clusters, volume 1734 of Lecture
Notes in Computer Science, chapter 24, pages 417–432. Springer-Verlag, Berlin, 1999.

23. A.R. Lebeck, X. Fan, H Zeng, and C.S. Ellis. Power-aware page allocation. In Proceedings
of ASPLOS IX, Nov 2000.

24. C. Liao, M. Martonosi, and D.W. Clark. Performance monitoring in a myrinet-connected
shrimp cluster. In Proceedings of the International Conference on Measurement and Model-
ing of Computer Systems (Sigmetrics’98), Aug 1998.

25. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS – On-line Monitoring Interface
Specification (Version 2.0). Shaker Verlag, Aachen, Germany, 1997. ISBN 3-8265-3035-7.

Automatic Data Locality Optimization Through Self-optimization 201

26. Thomas Ludwig and Roland Wismüller. OMIS 2.0 — A Universal Interface for Monitoring
Systems. In M. Bubak, J. Dongarra, and J. Wasniewski, editors, Recent Advances in Parallel
Virtual Machine and Message Passing Interface, volume 1332 of Lecture Notes in Computer
Science, pages 267–276, November 1997.

27. Thomas Ludwig, Roland Wismüller, and Arndt Bode. Interoperable Tools based on
OMIS. In Proc. 2nd SIGMETRICS Symposium on Parallel and Distributed Tools
SPDT’98, page 155, Welches, OR, USA, August 1998. ACM Press. http://www.acm.
org/pubs/citations/proceedings/metrics/281035/p155-ludwig/.

28. Scott McNealy, Greg Papadopoulos, and Jonathan Schwartz. N1: Revolutionary IT Archi-
tecture for Business. http://wwws.sun.com/software/solutions/n1.

29. Sun Microsystems. Ultra-SPARC IIi User’s Manual. 1997.
30. Motorola. MPC7450 RISC Microprocessor Familiy User’s Manual. 2001.
31. T. Mu, J. Tao, M. Schulz, and S. A. McKee. Interactive Locality Optimization on NUMA

Architectures. In Proceedings of the ACM Symposium on Software Visualization, San Diego,
USA, June 2003.

32. P.J. Mucci, S. Browne, C. Deane, and G. Ho. PAPI: A portable interface to hardware per-
formance counters. In Proceedings of the Department of Depense HPCMP User Group
Conference, Jun 1999.

33. M. Schulz, J. Tao, C. Trinitis, and W. Karl. SMiLE: An Integrated, Multi-paradigm Soft-
ware Infrastructure for SCI-based Clusters. In Proceedings of the IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid), pages 247–254, Berlin, Germany,
May 2002.

34. InstallShield Software. Web Page. http://www.installshield.com/.
35. ZeroG Software. Web Page. http://www.zerog.com/.
36. B. Sprunt. Pentium 4 performance-monitoring features. In IEEE Micro, pages 72–82,

Jul/Aug 2002.
37. B. Sprunt. The basics of performance-monitoring hardware. In IEEE Micro, pages 64–71,

Jul/Aug 2002.
38. Jie Tao, Martin Schulz, and Wolfgang Karl. A Simulation Tool for Evaluating Shared Mem-

ory Systems. In Proceedings of the 36th Annual Simulation Symposium, Hyatt Orlando,
Florida, April 2003. To be appear.

39. R. Wismüller. Interoperability Support in the Distributed Monitoring System OCM. In
Proceedings 3rd International Conference on Parallel Processing and Applied Mathematics
- PPAM’99, pages 77–91, Kazimierz Dolny, Poland, September 1999.

40. R. Wismuller, J. Trinitis, and T. Ludwig. OCM - A Monitoring System for Interoperable
Tools. In Proc. 2nd SIGMETRICS Symposium on Parallel and Distributed Tools SPDT’98,
page 149, Welches, OR, USA, Aug 1998. ACM Press.

41. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
characterization and methodological considerations. In Proceedings of the 22nd Annual In-
ternational Symposium on Computer Architecture, pages 24–36, June 1995.

A Bio-inspired Approach for Self-protecting an
Organic Middleware with Artificial Antibodies

Andreas Pietzowski, Benjamin Satzger, Wolfgang Trumler, and Theo Ungerer

Institute of Computer Science – University of Augsburg
86159 Augsburg, Germany

{pietzowski, satzger, trumler, ungerer}@informatik.uni-augsburg.de

Abstract. Our human body is well protected by antibodies from our
biological immune system. This protection system matured over millions
of years and has proven its functionality. In our research we are going to
transfer some techniques of a biological immune system to a computer
based environment. Our goal is to design a self-protecting middleware
which is not vulnerable to malicious events. First off this paper proposes
an artificial immune system and evaluates optimal parameter settings.
This shows the correlation between the size of a system and the length of
the receptors used within antibodies for an efficient detection. Our tests
showed that the recognition rate of unknown malicious objects can reach
up to 99%. Further on we describe the integration of the immune system
into our organic middleware OCμ and afterwards we propose techniques
to minimize the memory space needed for storing the antibodies and to
speedup the time needed for detecting malicious messages. We obtained
a space minimization by 30% and gained a speedup of 30 with execution
time optimization.

1 Introduction

To secure computer systems, current protection applications (e.g. virus scanners)
have to be aware of signatures from viruses or worms that occurred previously.
Due to that restriction they cannot recognize or handle brand new intruders that
are not already stored in a database. Computer immunology opens up new ways
and methods to recognize new intrusions like our biological immune system does
[2] and fits well into the research fields of autonomic [12] and organic comput-
ing [13] that explore self-organization techniques to achieve computing systems
that are self-configuring, self-optimizing, self-healing, and self-protecting. In our
organic ubiquitous middleware research [16] we investigate self-protection tech-
niques to cope with intentionally or unintentionally malicious peers or services.
The biologically inspired technique of computer immunology extracts ideas from
our human immune system to develop an artificial counterpart [4]. Thus the
following approach is a first protection step which can detect intrusions within
a system with high message activity in a fast way. The main goal is to develop a
whole self-protecting system like our biological immune system which is permis-
sive to good-natured middleware services and messages but can detect appearing

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 202–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Bio-inspired Approach for Self-protecting an Organic Middleware 203

malicious events. This immune system is implemented in our organic middleware
to evaluate its self-protection behavior in a real environment.

The next section confronts the biological with the artificial immune system
and shows the different preferences and their effectiveness. We continue with
optimizing the system as well for memory requirements as also for execution time
minimization. Subsequently we discuss the implementation of the self protecting
system and its components in the organic middleware. In the end we mention
related researches and end up with conclusions and future work.

2 Transition from Biological to Artificial Immune System

Lets first have a look at the functionality of the biological immune system which
is present in every animal and human being. The basic requirement of such
an immune system is to distinguish between harmless objects called selfs and
harmful objects or antigens called non-selfs [9]. Matching works due to different
protein patterns on the surface of the unknown objects and the antibodies. In
our body we have an instance named thymus which is aware of all selfs known
in the body. Antibodies are continuously created with random protein surfaces
and get singled out with negative selection. This means if such a cell is activated
in the thymus it will be destroyed [6] otherwise it will be released to the body
to protect it against a specific type of intruder. This biological immune system
is extremely distributed besides the centralized work of the thymus [15].

Fig. 1. Example how an antibody docks to a message and starts comparison

In a computer-based immune system the working domain concerns bit strings
instead of proteins. The goal in an artificial immune system is also to distin-
guish between foreign non-self messages and messages which are tolerated in the
system because they belong to self. It also should be distributed that the mid-
dleware does not end up unprotected if one central detection node in the system
gets disabled or unreachable. To avoid this we abided by the highly distributed
biological paradigm. Thus we developed antibodies which are represented by a
short bit string of length R which embodies the receptor. Additionally the anti-
bodies have a specific offset where they start their comparison to the messages
(see figure 1). Instead of waiting for all newly created antibodies until they per-
ambulated the thymus we preferred to generate them in a structured way. This
works because the middleware is aware of all its self messages and thus it can
create all receptor patterns not used by any self message at a specific offset.

204 A. Pietzowski et al.

3 The Design of the Artificial Immune System

With the approach described in the previous section we have different values
which have to be considered or adjusted to optimize the recognition of non-selfs
in a decentralized system:

– The length of the self messages
– The receptor length of the antibodies
– The amount of different offsets among all antibodies where they start the

comparison
– The choice and amount of antibodies distributed in the system and located

at a node in the system

To evaluate the immune system approach we implemented the artificial
immune system into our middleware OCμ [16]. We also separated the key com-
ponents from the system and built a simulation environment for faster evalua-
tions. This simulation environment provides the possibility to generate a specific
amount of selfs and antibodies with a given or calculated receptor length.

3.1 The Length of the Messages

Instead of grappling around with messages of different and maybe infinite length
we transformed all the messages appearing in the system to a unified length by
using a hash algorithm. Now the optimal length of the resulting hash value has
to be determined and the most appropriate hash algorithm has to be chosen.

Fig. 2. Sections within some hashed self messages when a receptor length of six bits
at offset 2 is used

In our system we have S self messages. Antibodies always compare themself
to the hashed incoming messages at R contiguous bits, similar to [9], but always
starting at a specific offset O (see figure 1) and always comparing the whole
receptor.

We regard antibody-specific sections within the set of all self messages, where
a section is defined as the part an antibody should compare to, i.e. the R con-
tiguous bits of the antibody starting at its specific offset O. The sections of all

A Bio-inspired Approach for Self-protecting an Organic Middleware 205

hashed self messages with the same offset and length form a group (see figure
2). All the hashed self messages can be grouped in P groups - namely submes-
sages of length R starting at position O from the hashed self messages. We only
consider one of these groups because every group behaves identical. Thus one
group consists of S messages of random bit sets of length R and the maximum
amount of antibodies which can be created in this group is limited by the usage
U of different bit sets in a group.

Because the system is aware of all the harmless self messages it is able to
analyze the binary distribution within the different groups. The following pseudo
algorithm shows how the possible antibodies can be created for a specific offset:

Algorithm 1. Generating antibody receptors for a specific offset group
R = 1;
pattern = 0; // binary representation of the pattern
loop

while pattern < 2R do
if !groupMatches(pattern) then

possibleAntibody(pattern); // negative selection
end if
pattern++;

end while
pattern=0;
R++;

end loop

The algorithm produces all possible antibodies starting with the smallest re-
ceptor length of one bit. Because there is no upper bound for the receptor length
the loop can be exited when enough receptors were created.

3.2 The Optimal Length of the Receptors

For determining the optimal length of the receptors we set up different simulator
configurations with different amounts of self messages and tested the recognition
of antibodies with different receptor lengths. The performance of the different
types of antibodies is shown in figure 3 where always the maximum amount of
antibodies were created in every test environment.

This experiment demonstrates that it is not efficient to choose antibodies
with a fixed or even a random length for the receptors. Instead it shows that
this value has always to be adjusted due to the amount of self messages known in
the system. To achieve this we have to look a bit closer to some conditions. We
consider a binary alphabet and hashed messages of length L. We use antibodies
with a receptor length of R bits and those receptors can be compared to the
hashed messages at most at P different starting positions or offsets:

P = 1 + L−R, R ≤ L (1)

206 A. Pietzowski et al.

Fig. 3. Recognition probability with different amount of selfs and receptor lengths

If every antibody has its fixed offset where it compares itself with the hashed
message we end up in Aall different antibodies which match all possible selfs and
all non-selfs:

Aall = 2R · P (2)

Lets assume that we have S different self messages in our system which should
not be recognized by the immune system. In the worst case we get an amount
of Aself antibodies which should not leave the thymus because they match at
least one self:

Aself = S · P (3)

This results in at least Aeff effective antibodies:

Aeff = Aall −Aself = 2R · P − S · P, R ≤ L (4)

The optimal length of the receptor can be determined when considering that
the amount of antibodies should be equal or smaller than the amount of selfs.

Aeff ≤ S (5)

2R ≤ S · 1 + P

P
(6)

R � �log2(S)� (7)

This shows that the best length for the receptors should always be smaller
than the binary logarithm of the amount of known self messages1 but at least
long enough to get a group usage below 100%. The group usage is the percentage
value which embodies how many different bit patterns appear in that group with
respect to all possible bit patterns.
1 As the receptor length has to be whole-numbered we always use the next lower

integer as result of the binary logarithm.

A Bio-inspired Approach for Self-protecting an Organic Middleware 207

Because the system is aware of all the harmless self messages it is able to ana-
lyze the binary distribution within the different groups. Thus a better length
can be calculated because the mathematical calculation always assumes the
mean probability which does not always match with the reality. We introduced
a threshold for the group usage to calculate a good length for the receptors.
Different tests showed that the recognition of non-selfs is best (with also low
memory usage) if using a receptor length at which the group usage is slightly
below 95%. In any other way there are too many antibodies to generate or not
enough for a sufficient recognition rate.

3.3 The Amount of Offsets

In our research we tested different kinds of offsets which were used to match the
antibodies with a hashed message to detect malicious objects. The easiest way
is to define only a single offset and generate antibodies with receptors of length
R which compare to the hashed message only at this specific offset. But this is
exactly the same as if the hashed messages would have the same size than the
receptors and the whole incoming messages always compares to the antibodies.
This would result in a very bad recognition of non-selfs as the usage of this group
corresponds to the probability for not recognizing the non-selfs.

In contrast in another test environment we designed the antibodies to use
all possible offsets. This results in fully overlapping groups and thus less hashed
messages can be generated that do not match any antibody. And as expected our
tests showed that the more we overlapped the groups the better the recognition
of non-self messages worked out. the best recognition was observed when using
all possible offsets (from offset 0 to L − R) and always the same amount of
antibodies in each offset group.

3.4 The Right Choice of Antibodies

When not generating all possible antibodies, it is important how many antibodies
to create and at which offsets. Because the system is aware of all selfs and
thus it is aware of all used receptor patters in all groups we can generate the
antibodies in a structured way. We tested three different methods for the creation
of antibodies:

– Generate antibodies with fewest group usage first
– Generate antibodies with highest group usage first
– Generate an equal amount of antibodies in every group

In our tests we set up a system containing 1000 self messages. Thus we gener-
ated different amounts of antibodies with the three methods mentioned above.
The result of recognizing malicious messages is shown in figure 4. First we gener-
ated antibodies out of those groups which have the fewest usage but this resulted
in a bad recognition of non-selfs – at least when generating only 1000 antibodies.
A similar bad behavior was observed when choosing the second method where
those antibodies were generated first which had the offsets of those groups with

208 A. Pietzowski et al.

the highest usage of bit patterns. Apparently, the best method – also when gen-
erating only a few antibodies – is to generate an equal amount of antibodies in
every group.

Fig. 4. Recognition with different methods of generating antibodies

This experiment also showed that the recognition of non-selfs leads up to
99.3% when using 5000 antibodies of a receptor length of nine bits and equal
distributed offsets among all antibodies in an environment of 1000 self messages.

4 Optimizations

4.1 Optimizing Memory Requirements by Merging Antibodies

At a first thought one would suggest to store the self messages instead of the
antibodies and compare all incoming messages with the self set. This is correct
when the system has only a few self messages but this research examines sys-
tems with high activity and thus many self messages. When looking closer to
this issue the usage of antibodies should be preferred. In the system setup men-
tioned in section 3.4 it would need 1000 ·128bit = 15.6kb to store all known selfs.
Compared to the amount of 5000 antibodies with a receptor length of nine bits
and 128 different offsets this results in only 5000 · (9bit + 7bit) = 9.77kb memory
to store these antibodies and still reach a recognition probability of 99,3%. The
seven bits result from the storage of the specific offset which can take values
from 0 to 128−R. Another benefit of choosing the antibodies is that only short
receptors have to be compared instead of the whole hashed messages of 128 bits
in length.

We propose a technique for memory requirement minimization which does
not advance the recognition probability but minimizes the amount of antibodies
to be stored in the system. Two antibodies with the same offset and with an
identical receptor can be merged to one and the same antibody which is trivial.

A Bio-inspired Approach for Self-protecting an Organic Middleware 209

Fig. 5. Mimizing the amount of antibodies by merging at specific bits on the receptors

But also antibodies with the same offset and different receptors can be merged
to one antibody if they differ at only one position on the receptors. In that case
a new antibody can be created with a wildcard at this specific position which
replaces the two antibodies. At compare time this wildcard position does not
have to be compared because it treats both possible values – 0 and 1 – as a valid
bit yielding even in a small speedup. Additionally antibodies with wildcards can
be merged together when two receptors have the same wildcard positions and
differ at exactly one further position.

In our tests we were able to eliminate about 30% of the antibodies by merg-
ing them together. We evaluated the optimization with different amounts of
randomly generated antibodies and figure 5 shows how many antibodies could
be merged to antibodies with one and two wildcard positions when using a setup
of 1000 and 2000 antibodies. Unfortunately in our test cases we were never able
to produce antibodies with three or more wildcards because this is very difficult
when the group usage of selfs exceeds some specific value.

4.2 Optimizing Execution Time

In a human body the comparison of antibodies against appearing objects takes
place in a three-dimensional environment and antibodies check themselves ran-
domly all the time. Due to the one-dimensional architecture of computer memory
we have to cope with some limitations in that aspect [2]. In our test cases we
stored all antibodies in an array and thus the comparison against incoming mes-
sages takes some time - more precisely if we have A antibodies with a receptor
length R we have to cope with a time complexity of O(A · R) to compare an
incoming message to all antibodies. That is not very efficient if we have a lot of
different antibodies. Comparison would slow down the communication between
applications.

210 A. Pietzowski et al.

To achieve a more efficient comparison a new storage mechanism has to be
devised for the antibodies. Many antibodies correspond to other antibodies in
specific parts of their receptor. So the idea grew to store the receptors in a
binary tree. Thus the comparison can start at the root of the tree and follow the
way down according to the binary pattern. If there is a complete way down to
the bottom of the tree one antibody stored in that tree matched the incoming
pattern (see figure 6).

Fig. 6. Representation of a receptor tree that contains the receptors 010, 011 and 101.
White nodes represent enabled values at specific positions, gray nodes are values that
are not available in any receptor.

This approach implements a separate perfect binary tree (without a root
node) of depth R for each offset known in the system. A tree is analogous to
the receptors of the antibodies at one specific offset if read from top to bottom
and only traverses enabled nodes (enabled nodes are white colored in figure 6).
Because every tree has to be perfect and every node consists of one boolean
value a memory usage of (2R+1 − 2) bits is necessary for every tree with an
offset in P . To compare incoming messages against the trees each tree has to be
passed according to the incoming pattern at the corresponding offset. If there
is no enabled path from the root to the bottom of the tree the next tree com-
parison takes place which embodies the antibodies at another offset. If one tree
matches at one specific path the message is treated as malicious. This compar-
ison results in a time complexity of O(P · R) and because in general P A
this approach is much faster than comparing all antibodies with a complexity
of O(A ·R). Further more P and R are fixed for a group of trees this results in
O(1) for comparing incoming messages to all stored antibodies. In our tests the
tree comparison resulted in a 30 times faster comparison than using the linear
comparison algorithm.

5 Integration in the Organic Middleware OCμ

The Organic Middleware OCμ (formerly known as AMUN) [16] is a message-
based middleware based on the peer-to-peer system JXTA (see figure 7). To

A Bio-inspired Approach for Self-protecting an Organic Middleware 211

realize the self-x properties from organic computing the middleware is extended
by an organic manager and interfaces which add monitoring capabilities. Be-
cause of that manager the system is categorized as an organic middleware. Dif-
ferent services are started among the nodes of the system depending on a given
configuration. Those services are not fixed to a node but can be relocated au-
tomatically by the middleware for self-optimizing the whole system if necessary.
All services contain an unique ID and communicate through messages. All mes-
sages which are sent by a node always preambulate the event dispatcher where
different message monitors can be placed either at the incoming or the outgo-
ing interface. Message monitors can operate on incoming or outgoing messages
without any control by the services (i.e. in this case a message monitor checks
the messages if they are self or non-self). The goal of this work is to integrate
the artificial immune system to prevent the system from malicious intrusive ser-
vices or messages. The intrusion detection system in OCμ currently consists of
three components: The thymus, the immune instance, and the intrusion detection
monitor.

Fig. 7. The architecture of the organic middleware OCμ

5.1 The Thymus

The thymus is realized as a service in the middleware and is the cornerstone
of the whole immune system. It has the ability to ask its local services for
all message types known from the configuration and also to ask remote thy-
muses about the message types used on that node. This implicates that a
thymus service also has the functionality to spread the known message types

212 A. Pietzowski et al.

to other nodes as they are requested be remote thymuses. Another task of a thy-
mus service is the proper generation of antibodies with respect to the systemwide
known message types and to suggest a suitable receptor length of the antibodies
to achieve an optimal recognition rate of intrusive message types. Generating
antibodies is very time consuming. Thus the most thymuses in the middleware
just send all their local message types to some dedicated thymus services which
generate all necessary antibodies. Therefore every node in the middleware should
run an instance of the thymus service - at least for sending the known selfs.

5.2 The Immune Instance

The component called immune service embodies the instance which decides if
some intruding message should be accepted or treated as non-self. Therefore
this module is also realized as a middleware service. It is able to receive anti-
bodies which are generated and spread by the dedicated thymuses around the
middleware. Those antibodies are internally stored in an array for comparison
to incoming message. In the next section we will show how to speed up the
comparison when using a binary tree for storage.

5.3 The Intrusion Detection Monitor

The last component in this architecture is the intrusion detection monitor (IDM)
which is placed in front of the incoming message monitor queue within the event
dispatcher (see figure 7). Every incoming message is checked automatically for
its validity. To realize this the monitor sends the message type and the ID of the
sending service to the immune service. This service decides if the message either
belongs to self and should be trusted or classifies it as non-self because it may
be harmful to the middleware and its functionality. As for now the intrusion
detection monitor only checks for malicious messages and can block them but
it does not defend the intrusion yet. Tracking back a malicious message to its
originator results in detection of a harmful service.

5.4 Efficiency of the Artificial Immune System

There are two issues which have to be considered for evaluating the efficiency.
On the one hand there is the time needed for generating the antibodies and
on the other hand the time needed to check an incoming message. Generating
antibodies is time consuming anyway and this work is only done on dedicated
nodes. Due to that fact the job of the thymus will not be measured. Every in-
coming message on a specific node has to be categorized as good or bad. This
check might also be time consuming and may affect the response time of the
system. Due to that issue we measured the delay which appears when sending
all messages through the monitor. When the detection monitor is enabled and
with the optimizations described in the previous section, a node in the mid-
dleware only needed about 0.3% to 1.3% more time to process any messages
than the normal message handling in OCμ without any checks. These values

A Bio-inspired Approach for Self-protecting an Organic Middleware 213

were measured with 5000 selfs, about 15,000 antibodies and 10,000 randomly
generated messages in a running OCμ system.

6 Related Work

Non-immunological detection systems are mostly signature based or at least they
use the information gained from previously detected anomalies. For example
current virus scanners contain signatures from known viruses and scan files for
a match with those signatures. But there are also approaches which can detect
unknown or new intrusions because of not comparing to known patterns but the
other way round – using the negative or clonal selection.

Hofmeyr and Forrest developed an architecture for an artificial immune system
to detect intrusions in a network [9]. They also modeled their immune system
on the biological immune system described in section 2. The antibodies and the
messages in their system consist of bit strings with a fixed length and the system
compares the messages appearing in the network to all created antibodies. If r
contiguous bits are identical the message is treated as non-self otherwise the
messages is accepted by the immune system. The number r has to be adjusted
in their system to tune the recognition probability and can have values from one
bit to the entire length of the messages [10]. Our approach follows a similar way
to design the antibodies but shows the basic correlation between the amount of
self-messages and the length of the receptors needed to get an optimal recognition
probability in any domain.

A further approach was made at the Swiss Federal Institute of Technology
in Lausanne where an artificial immune system was proposed which can detect
misbehavior in mobile ad-hoc networks because the dynamic source routing in
those networks can be used by malicious nodes to vulnerate the system. They
generated random antibodies using negative and clonal selection. With clonal
selection antibodies generate copies of themselves with similar but not strictly
identical receptors [1]. Our immune system aims at another application domain,
i.e. to protect our organic middleware from intrusive services. Plus, in our arti-
ficial immune system we are aware of all selfs used in the system and thus we
have the ability to know what belongs to self and non-self.

7 Conclusions and Future Work

The tests showed that the recognition rate was very good (up to 99.3% in some
test cases) when choosing a suitable receptor length and an appropriate amount
of antibodies. We also looked closer at the speed of detecting selfs and non-selfs
and found a way to speed up the comparison enormously by using a binary tree.

The organic middleware [16] is a message oriented middleware based on a
peer-to-peer system. To realize the self-x properties from organic computing
paradigms the middleware is extended by an organic manager and interfaces
which add monitoring capabilities. As for now we implemented the automatic
generation and distribution of the antibodies in the middleware environment

214 A. Pietzowski et al.

and we also proposed some improvements and optimizations which lead to lower
memory usage and a faster detection.

In a next step we integrated a reaction system around the detection mecha-
nism at an early stage. Thus the middleware will be able to deactivate malicious
services or shut down infected nodes in the network to prevent other nodes from
the intrusion. This leads to a so-called self-healing mechanism which recovers
the system after a successful defeating of malicious events.

References

1. Jean-Yves Le Boudec and Slavǐsa Sarafijanović. An Artificial Immune System Ap-
proach to Misbehavior Detection in Mobile Ad-hoc Networks. In In Proceedings of
Bio-ADIT – The First International Workshop on Biologically Inspired Approaches
to Advanced Information Technology, pages 96–111, Lausanne, Switzerland, Janu-
ary 2004.

2. Mark Burgess. Computer Immunology. In Twelfth Systems Administration Con-
ference (LISA ’98), Boston, Massachusetts, December 1998.

3. Robert M. Corless, David J. Jeffrey, and Donald E. Knuth. A Sequence of Series for
the Lambert W Function. In International Symposium on Symbolic and Algebraic
Computation, pages 197–204, Maui, Hawaii, USA, 1997. ACM.

4. L. N. de Castro and J. Timmis. Artificial Immune Systems: A Novel Paradigm to
Pattern Recognition. In J. M. Corchado, L. Alonso, and C. Fyfe, editors, Artificial
Neural Networks in Pattern Recognition, pages 67–84, SOCO-2002, University of
Paisley, UK, 2002.

5. Leandro N. de Castro and Fernando J. von Zuben. Biologically Inspired Computing.
Idea Group Publishing, 2005.

6. Patrik D’haeseleer. An Immunological Approach to Change Detection: Theoretical
Results. In 9th IEEE Computer Security Foundations Workshop, Dromquinna
Manor, County Kerry, Ireland, June 1996. IEEE.

7. John M. Hall and Deborah A. Frincke. An Architecture for Intrusion Detection
Modeled After the Human Immune System. In Proceedings of the International
Conference on Computer, Communication and Control Technologies, volume 6,
pages 75–78, 2003.

8. Emma Hart and Jonathan Timmis. Application Areas of AIS: The Past, The
Present and The Future. In 4th International Conference on Artificial Immune
Systems (ICARIS 2005, volume LNCS, pages 483–497. Springer-Verlag, 2005.

9. Steven A. Hofmeyr and Stephanie Forrest. Architecture for an Artificial Immune
System. In Evolutionary Computation 8, number 4, pages 45–68, Massachusetts
Institute of Technology, 2000.

10. Steven Andrew Hofmeyr. An Immunological Model of Distributed Detection and
Its Application to Computer Security. PhD thesis, University of New Mexico, May
1999.

11. Zhou Ji and Dipankar Dasgupta. Estimating the Detector Coverage in a Nega-
tive Selection Algorithm. In Genetic and Evolutionary Computation Conference
(GECCO 2005), pages 281–288, Washington DC, June 2005. ACM.

12. Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
IEEE Computer Society, pages 41–50, January 2003.

13. Christian Müller-Schloer. Organic Computing Initiative. Published as PDF
on http://www.informatik.uni-augsburg.de/lehrstuehle/sik/research/
organiccomputing/download/OC-english.pdf, April 2004.

A Bio-inspired Approach for Self-protecting an Organic Middleware 215

14. Ronald Rivest. The MD5 Message-Digest Algorithm. Technical Report Request
for Comments: 1321, Internet Engineering Task Force (IETF), April 1992.

15. Anil Somayaji, Steven Hofmeyr, and Stefanie Forrest. Principles of a Computer
Immune System. In New Security Paradigms Workshop, pages 75–82, Cumbria,
UK, 1997. ACM.

16. Wolfgang Trumler, Faruk Bagci, Jan Petzold, and Theo Ungerer. AMUN - au-
tonomic middleware for ubiquitous environments applied to the smart doorplate.
Advanced Engineering Informatics, (19):243–252, April 2005.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 216 – 229, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Autonomic Management of Edge Servers

Mikael Desertot1, 2, Clement Escoffier1, Philippe Lalanda1, and Didier Donsez1

1 Laboratoire LSR-IMAG, 220 rue de la Chimie,
Domaine Universitaire, BP 53

F-38041 Grenoble, Cedex 9, France
{mikael.desertot, clement.escoffier philippe.lalanda,

didier.donsez}@imag.fr
http://www-adele.imag.fr

2 Bull SA
1, rue de Provence - BP 208

F-38432 Echirolles Cedex - France

Abstract. Delivering innovative Internet services raises numerous business and
technical challenges for providers. It actually requires building and managing
complex, distributed architectures in order to reach the quality of service that is
needed. In this paper, we argue that using edge computing in the domain of
Internet services has a number of advantages. However, this approach relies on
complex and hard to administrate environments. We believe that autonomic
computing techniques constitute a key element for the dynamic management of
edge servers. In the paper, we present an autonomic manager that meets the
market needs and that has been tested in collaboration with Bull SA.

1 Introduction

The Internet has become a major means to share information and, more recently, to
provide e-services to individuals and companies. A broad range of industries is actu-
ally depending more and more on the Web to sus pport their business processes
[5][13]. Many think it represents the next wave of e-business, and when looking at the
resources that companies are investing on this matter, we see that the stakes are sub-
stantial.

Unfortunately, providing services meeting the market needs is not easily achiev-
able because services have to meet stringent requirements regarding performance,
security and availability, which are nonnegotiable features. Due to the ever-growing
number of users and the heterogeneity of rendering devices (laptops, PDAs, mobile
phones), handle these requirements is a more and more challenging task for service
providers. It actually requires building and managing complex, distributed architec-
tures, in order to reach the needed quality of service (QoS).

The most common approach to meet these requirements is to deploy clusters on the
service providers' sites. By replicating the infrastructure and by using load-balancing
policies, service providers are able to ensure reasonable response times and high
availability. However, this approach has at least three main drawbacks. The first one

 Autonomic Management of Edge Servers 217

is that the expensive resources put together to make up a cluster are not used all the
time. There are fully exploited only when the web site faces load peaks or flash
crowds. Most of the time, a large part of the cluster is inactive. The second issue is the
management complexity of such architectures. It requires a domain expert to manage
load balancing and to monitor the cluster execution. Indeed, increasing the number of
machines also means increasing the number of possible failures. The third problem is
that clusters do not provide solution to networks congestion.

An alternative approach is to use the concept of edge computing. The purpose of
this recent paradigm is to move computing resources away from centralized servers
(or clusters of servers) to physical nodes close to the clients. Edge computing is gain-
ing wider acceptance for a number of reasons such as bandwidth savings, optimal
resource usage, or security and QoS improvement. At the same time, running applica-
tions at the edge is becoming possible in many fields. In the domain investigated in
this paper, the concept of edge computing can be implemented by service providers
through the loan of Internet Service Providers (ISP) resources. ISPs usually have their
own networked infrastructure to provide their customers with robust, secure and dedi-
cated link to the Internet. Part of this infrastructure, that is not fully used, can be
loaned to service providers in order to run services (or parts of services) on machines
close to their clients. The closest machines, which are on the logical edge of the ISP
network, are called Edge Servers.

Applying edge computing in the domain of Internet services has a number of ad-
vantages as explained below. However, a major problem remains. Similarly to clus-
ters, the Edge Computing approach relies on complex and hard to administrate envi-
ronments. Sophisticated monitoring actions have to be frequently undertaken in order
to maintain good QoS and to provide new features, regularly required by the clients.

In this paper, we argue that autonomic computing [1] techniques are a key element
for the dynamic management of edge servers. Autonomic Computing is already used
for clusters management, but it is possible to enlarge its use to fit Edge Computing
requirements. We present an autonomic manager that meets the market needs and that
has been tested in collaboration with Bull SA (see www.bull.com) through a "Video
on Demand" application. The paper is organized as follows. Next section shows how
the concept of edge computing can be applied to Internet services. Section 3 presents
the architecture of our system. Section 4 focuses on the autonomic manager for edge
computing. Section 5 presents case studies and some simulation.

2 Edge Computing and Internet Services

As previously mentioned, edge computing can be seen as a new business model for
ISP and Content Delivery Networks (CDN). According to this model, resources may
be allocated on-demand to service providers in order to face load peaks and flash
crowds. These resources are distributed over the ISP/CDN backbones and are gener-
ally numerous low-cost blade servers. Those servers are preferably close to the end
users to improve response time and to alleviate the ISP/CDN backbone.

Edge computing has a number of advantages [4][13]. First, it significantly reduces
the amount of data to be transmitted over a network (Internet in our case) and the aver-
age distance to reach the user. This reduces transmission costs, latency and, therefore,

218 M. Desertot et al.

improves QoS. This is especially true for multimedia–based services dealing with
video or audio streams. Edge computing also improves security; data entering edge
servers can be immediately verified and encrypted. Thus, since data go through fire-
walls sooner, viruses can be detected earlier.

Edge computing has been used primarily for caching purposes in multimedia–
based services (see Akamaï www.akamai.com). It is, for instance, particularly suited
to the video on-demand domain when blockbusters come out. In this case, provider
servers are not able to deliver the required number of streams in good conditions.
Caching movies close to consumers allows the delivery of high quality streams. Here,
the edge server can also be used to adapt the data streams to the client rendering de-
vices, which once again significantly saves bandwidth.

We experiment the use of edge computing in the context of Internet services. This
part of the work is done in collaboration with the ObjectWeb consortium
(www.objectweb.org) and the Bull company which provide the industrial use cases.
More precisely, our purpose is to dynamically migrate part of the code implementing
the services on edge servers when needed (load peaks, stringent real-time require-
ments, etc.). We also investigate the domain of networked multiplayer game. In this
domain, it is impossible for a shared master server to face all the players’ requests.
Dynamically delegating part of the game management to servers close to users helps
providing the necessary computing power and decreases the response time (critical for
this domain).

Our approach is to implement services as a set of loosely coupled software compo-
nents (preferably according to a three-tier architecture), that can be executed on the
providers servers or on the edge servers as well. This requires having compatible
runtime environments on both sides. In our project, we are using J2EE servers: the
open source JOnAS server (jonas.objectweb.org) on the provider side and a standard,
light-weight JOnAS version, that we have developed, on the edge servers. This light-
weight server can be seen as an extensible core easy to start, configure and stop on
demand (see [2] [3] for details). It dynamically provides the technical functions
needed to run a specified set of components, nothing more (recall that edge servers
are rented, shared machines). This work is however not in the scope of this paper.

To manage the components distribution we use an autonomic approach. The most
efficient distribution actually evolves over time and depends on many complex pa-
rameters. Managing the distribution is not doable by a human operator. The purpose
of the autonomic manager is therefore to dynamically and automatically place the
components implementing a service on the best suited servers. The efficiency of the
approach depends on the time needed to take decision and to install components. The
decision software and the associated infrastructure have then to be particularly flexi-
ble and reactive. The decision software has also to determine where and how compo-
nents should be migrated. Once a migration decision has been taken, it is necessary to
determine which components can be migrated (some may not be replicable, or it
could be not acceptable to migrate them for security or privacy purposes). Further-
more, components may depend on specific technical services for their execution.
These services have to be deployed and configured on the host servers.

 Autonomic Management of Edge Servers 219

3 Global Architecture

The overall architecture is based on the generic architecture proposed by IBM [1]. As
illustrated in figure 1, this architecture defines three main entities: the environment to
be managed, a set of “touch points” representing access points on the environment
(sensors and effectors) and an autonomic manager. The architecture dynamics is im-
plemented through a control loop: information is captured about the environment,
treated by the autonomic manager to decide which actions are to be executed on the
environment.

Fig. 1. Global architecture

In our system, the managed environment is the technical infrastructure of the ser-
vice providers and of the ISP, including the edge servers and the networks. It should
be noted that the number of entities to monitor is potentially huge. The autonomous
manager should be able to deal with thousand of users and tens of edge servers. In
addition, the number of users and the availability of edge servers are always evolving.
Edge servers, which belong to ISP, can appear and disappear at runtime.

As previously said, the way components are distributed on edge and providers
servers varies over time. It depends on the following parameters that have to be per-
manently monitored:
– the edge servers availability and their capacity to host additional computations

without decreasing their performance,
– the renting cost of the edge servers,
– the current and incoming load of the provider servers,
– the required QoS,
– the migration (and synchronisation) cost.

220 M. Desertot et al.

In the current implementation, information data are periodically required by the auto-
nomic manager, e.g. sent regularly by the different servers.

As illustrated in figure 1, the autonomic manager is dedicated to a single service
provider (we do not tackle the case where an autonomic manager is shared and multi-
operated). The autonomic manager can be on the same network as the provider serv-
ers or can be distant. Therefore it does not use the application bandwidth to retrieve
environmental information and so the provider network is not impacted.

4 The Autonomic Manager

We have also based our work on the generic architecture defined by IBM. As illus-
trated on figure 2, an autonomic manager is made of five components:

– a monitor collects (or receives) information on the managed environment and builds
periodical activity reports,

– an analyzer elaborates a representation of the environment’s state based on the activ-
ity reports,

– a planner uses the environment model to determine and schedule actions on the envi-
ronment if necessary,

– an executor is responsible for the correct realization of the scheduled actions,
– a knowledge base contains the information collected on the environment.

Fig. 2. A generic autonomic manager

We have implemented the five components of this generic architecture. As we will
see in the next sections, we had to face three important issues. The first one was to
feed the Monitor with data reflecting the environment in an efficient way, provid-
ing as much data as possible without being too intrusive. The second challenge
was to appropriately model the data and the applications. The last issue was to find
means to reason efficiently on a potentially large amount of data.

The Autonomic Manager has been implemented in Java. The communication
between the five components is bidirectional and relies on method invocations (the

 Autonomic Management of Edge Servers 221

Autonomic Manager is not distributed). Using Java has simplified the implementa-
tion and the connections to the J2EE environment. Its dynamic loading capabilities
were very interesting with respect to the management and evolution of the envi-
ronment.

4.1 The Monitor

As previously said, the purpose of the Monitor is to collect information and synthe-
size it in activity reports. Information is actually collected by probes distributed on the
different J2EE servers (provider or edge servers) and on the network in order to
evaluate its load (and to detect possible congestions).

Communication between the probes and the autonomic manager relies on Joram,
an open source implementation of the JMS standard (Java Messaging Service) avail-
able on ObjectWeb. In our context, asynchronous message-based communication
actually provides reliability and flexibility to the collecting process at a reasonable
cost.

Data collected by the probes are regularly sent to the autonomic manager through
messages, under various topics. Depending on the polling frequency, which can be
changed at run time, data may be raw or more elaborated. Finally, it has to be noted
that the autonomic manager can directly ask the probes for information, if needed.

The activity reports built by the Monitor contain the data themselves and additional
information including a timestamp, the location of the probe, the invocation process, etc.

4.2 The Knowledge Base

The knowledge base contains the data used by the analyzer to make decisions. In our
case, it contains the following information:

– the current status of the monitored environment (and historical data about it),
– a J2EE compliant description of the software architecture implementing the services,
– the current distribution of the software components,
– a set of management policies, i.e. the active strategies that are applied by the

decision process.

We have defined a specific Architecture Description Language (ADL) in order to
describe the implementation of services in terms of connected J2EE software
components. The purpose of this ADL is to reflect the structure of the applications
and to provide the information necessary for distribute them dynamically (and not to
generate the applications).

The ADL specifies three types of components: presentation components (servlet,
jsp), business components (EJBs) and data components (database). Presentation com-
ponents are those usually migrated in edge-oriented applications. Our approach allows
the migration of business components (and their dependencies) and data components.
However, moving data components can be complex: it actually implies the configura-
tion of the target servers to maintain the database connections available.

For each component, functional interfaces specify the methods provided to other
components and the methods required from other components. Each functional interface

222 M. Desertot et al.

is defined by its name, its type (provided or required) and the signatures of its meth-
ods. Functional interfaces are Java interfaces written by the developer. Control inter-
faces are optional and can be used to configure the components and manage their
lifecycle (actions of the autonomic manager on environment).

The ADL also includes information to guide the deployment decisions. First, each
component has an attribute named moveable which indicates if the component can be
moved to another location at run time. In some cases, components have to remain on
the initial server e.g. for security reasons. Second, provided interfaces have an acces-
sibility attribute which can be set to local, remote or both. On a provided interface,
this attribute indicates whether the component can be accessed remotely or not (i.e.
whether the EJB has remote or local interfaces). The colocalized attribute of required
interfaces positioned to "yes" indicates that binding a local interface is mandatory.
Indeed, in some case, required components have to be installed on the same machine
as the requesters e.g. for performance reasons.

A required interface may also have property attributes which are used for the dy-
namic selection of components fitting the requested interface. Such information is
crucial for the autonomic manager when it has to decide whether or not component
has to migrate. For instance, if such a component requires a local service, the auto-
nomic manager has to check that a component providing this service is existing or
deployable on the target edge server. It is important to note that using trading instead
of naming allows increasing the number of potentially useable components.

Figure 3 provides an example of architectural description including two presentation
components, three logical components (business components) and two data components.

4.3 Analyzer and Planner

One main goal of the analyzer is to maintain a coherent representation of the global
system. The planner has then to decide the actions to be undertaken in order to get the
best usage of the computing infrastructure.

Both components are implemented using Event-Condition-Action (ECA) rules.
This appears to be an efficient technique to deal with the large amount of data to
be handled and with the non deterministic nature of the algorithms to be imple-
mented. Managing a set of rules turned out to be rather easy. The dynamic update
of the rule set was very useful when the demand evolves. In our prototype, pre-
sented in the next section, rules are expressed in Java. Presumably this is not a
good solution but it was adequate for our experiment. The use of rules raises an-
other problem. If the policies contain many rules, the system behavior is hard to
analyze and, consequently, to debug.

The analyzer contains deductive rules which purpose is to build a representation
of the environment. In particular, these rules have to handle the addition and with-
drawal of resources (edge servers). An example of such rules is:

ON edge declaration
IF the new edge server is not know already

THEN add the new edge server to the list of available resources

 Autonomic Management of Edge Servers 223

Fig. 3. An application example and corresponding ADL

The planner contains action rules which purpose is to build an ordered set of ac-
tions to be sent and executed on touch points. A common example of action rule is the
deployment of a component and user redirection when a threshold is reached. For
example, the deployment of a presentation component P when a number of users is
reached (5000) could be written as:

ON user connection
IF number of hosted session == 5000

THEN deploy the presentation component P and redirect the user on the
Edge Server

This rule is evaluated when a user connects on the primary server. Then the planner
looks at the number of hosted sessions on the service provider infrastructure. If the

224 M. Desertot et al.

condition is valid, then the planner decides to deploy the requested page. To do so, it
uses the architecture description to get the dependencies and to find the set of compo-
nents to deploy (presentation, logic and data), and the bindings to redefine. Finally,
the user is redirected on the edge server.

The rules have been implemented using the Drools engine (Drools.org). Mandarax
and Jrules have also been evaluated. In our context, due to the very large amount of
information to be processed, the Mandarax performances were not satisfying. Drools
and JRules have similar performances, even if Drools may be a bit more powerful
when inserting a high number of objects.

4.4 Executor

The purpose of the Executor is to execute (on the J2EE servers) the set of actions
that has been decided and scheduled by the planner. There are two types of ac-
tions: edge server configuration and application configuration (including the man-
agement of the EJBs life cycle).

All the actions that can be executed regarding the applications are defined in the JSR
88 that provides a way to manage application deployment. It means that a J2EE server
complying with this specification provides remote control over the deployed component
lifecycle. It is then possible to remotely ask for application installation, update or un-
installation. These requests are sent to the servers using the JMX standard.

Regarding servers configuration, the following actions are particularly important:

– the configuration of the JDBC connectors which link data components and databases.
When a data component is moved to an edge server, (part of) a database may be rep-
licated. In this case, a local access must be configured. If the database is not moved, a
remote access has to be specified.

– the configuration of the registry which indicates where the components of an applica-
tion are running. Updating the registries is necessary when applications are split and
run on different machines. Components deployed on edge servers must have access
to a well configured registry in order to bind the remote component still running on
the primary servers.

These actions are also sent to the server in accordance with JMX, using the JSR 77 for
J2EE management.

5 Prototype and Simulations

The autonomic system presented in this paper has been validated in different ways.
First, we have developed an application on a limited number of machines in order to
validate the business interest of our approach. Second, we have tested the system on a
simulated environment in order to evaluate its ability to scale up.

5.1 Video on Demand Application

We have tested our solution on a use case dealing with video on demand on a
Content Delivery Network. To do so, we have used the OSGi (www.osgi.org) based

 Autonomic Management of Edge Servers 225

implementation of JOnAS [3] for the edge servers and the autonomic architecture pre-
sented in this paper.

OSGi is a software services deployment platform. Thanks to the introduction of
OSGi within JOnAS, it is possible to deploy on demand and at runtime non-functional
services needed by the installed applications. We are then able to delegate to the ap-
plication servers the management of non functional application dependencies that
normally fails to the autonomic manager.

The experiments were successful. Our system allows the dynamic deployment of
part of the applications on edge servers. For instance, we are able to dynamically
cache media files on edge servers in order to improve the response time. If no edge
server is present at a given time, we deploy a streaming server (we use Apple' Darwin
stream server) still taking advantage of OSGi capabilities.

It was not possible however to evaluate every aspect of our architecture. In particu-
lar, a thorough evaluation of the performances would have required a number of
machines exceeding the resources we had. We then decided to use simulated envi-
ronments to fully test our architecture.

5.2 Simulation

This section presents a simulation of the Edge Computing environment and shows the
effect of the administration policies. To ensure this approach is realistic, we validate it
by simulating the behavior of a classical environment. It shows that response time
strongly increases with the number of clients. We then simulate an Edge environment,
evaluating different management policies.

5.2.1 Simulated Environment
We based our simulations on the J-Sim simulator (www.j-sim.org), extended in order
to support a sufficient number of elements. The network is made of different entities:

– Primary servers representing the service provider infrastructure (mainframe,
cluster …)

– Edge servers representing ISP infrastructure (routing and hosting)
– Clients

The simulated network is made of 5000 clients, one primary server and 20 ISP net-
works (each with 1 Edge Server). To model low cost machines for Edge Servers, we
have chosen a ratio of 15 between the power of an Edge server and the power of a
primary server.

Clients are driven by two different scenarios. Every client launches 15 queries and
has a thinking time of 30s. In the first scenario, if the client is redirected, all others
queries are treated by the Edge server. There are no dependencies between the Edge
server and the primary server. In this case, the whole application is replicated on the
Edge servers. The second scenario imposes that 20% of the clients' connections must
use the primary server. This is a simplified version of TPC-W, a well known transac-
tional web e-Commerce benchmark (www.tpc.org). In this case, only the presentation
part and the logic part are replicated.

226 M. Desertot et al.

To simplify the simulation, the primary server hosts a unique application composed of
three parts: a presentation part, a logic part and data. In each simulation, we measure the
client response time, the number of redirected clients, and the “Edge periods” (period
during which Edge servers are used to host part of the application).

5.2.2 Simulations
The scenario we are using simulates a connection peak on a primary J2EE server. It is
divided into four steps characterized by the speed of client queries. In the first step,
client connections arrive at a slow rate (P1) with respect to the primary server power.
At this stage, the server can easily treat to all of them. During the second step, client
connections are very frequent (P2). The primary server cannot face this rush; the
response time grows. Then, the rush slows down, but the primary server still has diffi-
culties to answer quickly to all clients (P3). Finally, the client connections reach again
a low rate (P4).

The first simulation does not use the Edge servers. Figure 4 shows the response
time in this case. It clearly appears that the primary server alone is not able to guar-
anty a reasonable response time.

The second simulation uses Edge servers with a threshold-oriented policy: when
the primary server reaches a given number of hosted sessions, it launches the deploy-
ment process on Edge Servers and redirects new clients. The threshold was chosen to
redirect clients only if the response time is greated than 20s. With a lower threshold,
more clients would be redirected and more edge servers may be needed. On the other
hand, the mean response time should be smaller.

Fig. 4. Response time per client without Edge server

Figure 5 shows the effect of Edge Server on the client response time. It clearly appears
that the first redirected clients wait a substantial amount of time due to the deployment of
the application on Edge Servers. When the application deployed on the Edge Server is
ready, redirected clients have a low response time. Indeed, Edge Server does not host a
lot of sessions, so clients are treated quickly despite the “low” power of the machine. In
our simulation 384 clients are redirected. The mean response time in this case is 9s
against 15s without Edge Servers. In addition, 10% of the network bandwidth is saved.
However edge computing has a financial cost: in this example, edge servers have to be
rented during 11 minutes (see “edge period”).

 Autonomic Management of Edge Servers 227

Fig. 5. Response Time per client with a threshold policy

In the third simulation, we use Edge servers with a proactive policy. The purpose
of this policy is to detect a peak of connections and to launch the migration before the
redirection threshold is met. However, when launching the migration in advance, the
redirection threshold is not yet reached. This approach can be inadequate if the work-
load changes rapidly. As illustrated in Figure 6, this policy increases the “Edge Pe-
riod”. In our example, edge servers have to be rent during 13 minutes but redirected
clients do not wait during the migration.

Fig. 6. Response time per client with a proactive policy

5.2.3 Summary
Simulation has shown the ability of our system to scale up when the number of clients
increases. It has also shown that the reaction time of the system, that is the time
needed to decide on a migration, remains low.

We have also investigated different management policies. It is interesting to note that
many policies can be applied on an Edge Computing environment. For example, it can
be decided to use edge servers as soon as the primary server is started. So clients never
pay for migration. However, in this case, service providers must rent resources during
all the application lifetime. The choice of a policy depends on the available resources
and the desired response time but also on the components to migrate / replicate. For
example, if Edge servers are really slow and shared by several service providers, the
threshold should be higher to avoid overloading of Edge servers.

228 M. Desertot et al.

6 Related Work

We have partly tackled two different domains to perform this work. The first one is
Edge Computing. The second one is Autonomic Computing.

Edge computing is today more than a concept: many architectures are already de-
ployed and substantial benefits are provided. In the Content Delivery Network (CDN)
domain, edge servers are used to stream sounds or video with a good quality and
without latency and to adapt the media to the client viewer [15]. In the Web cache
domain, edge servers allow the caching of static and dynamic web pages. However,
these applications focus only on the migration of the presentation layer of applica-
tions. Some academic work has studied the migration of the data layer of applications
[6][16]. To our knowledge, there are currently no significant results about the migra-
tion of complete applications or of the logical (business) layer of applications.

Autonomic is a recent but very popular domain. Numerous studies have been
started on both the industrial side and the academic side [7][8][10][11]. We can men-
tion here interesting work on the use of probes to collect information on the environ-
ment, on the use of ECA rules [12] or constraints [9] to analyze the environment and
to determine actions to be undertaken.

Autonomic managers are used today in order to supervise environments such as
clusters (some work has been done in the J2EE context [14]). In this domain, the
resources to be managed are owned and managed by a single actor. In the edge com-
puting domain, resources are owned by different actors and may be multi-operated.
Data to be collected in order to take a decision are then different and, we believe,
more numerous. Also, the large-scale distribution of the servers raises additionnal
problems. At present time, there is not a lot of on going work about fine grained dis-
tribution of applications.

7 Conclusion

We have presented in this paper an innovative approach to dynamically distribute
applications on edge servers. We promote a fine-grained approach where presenta-
tion, business and data components can be deployed on edge servers depending on the
situation.

We have also developed the idea that advanced edge computing environements are
difficult to manage and that autonomic computing can help. We have then presented an
autonomic manager, which architecture is derived from the seminal work of IBM. The
autonomic manager uses an ADL-based description of the applications in order to dy-
namically distribute them on the best places. Our approach has been validated on a real-
size application and tested more thoroughly in a simulated environment. The autonomic
manager we propose is generic and can be adapted to any domains whereas application
descriptions used by the manager are specific to the J2EE domain.

Short terms perspectives concerning this work are to improve the data polling on
the environment. Adding new data types may help to refine the rules and decrease the
response time. We also intend to extend the use of the autonomic manager to other
domains than J2EE.

 Autonomic Management of Edge Servers 229

References

1. Kephart, J., Chess, D. “The vision of autonomic computing”, IEEE computer, 36(1), 2003
2. Desertot, M., Escoffier, C., Donsez, D. “Autonomic Management of J2EE Edge Servers”,

3rd International Workshop on Middleware for Grid Computing, MGC’05, Grenoble, No-
vember 2005

3. Desertot, M., Donsez, D. “Infusion of OSGi Technology into a J2EE Application Server”,
OSGi World Congress, Presentation, Paris, October 2005

4. Weihl, A., Jay, P., William, E. “Edge computing: Extending Enterprise Applications to the
Edge of the Internet” In Proceedings of the 13th International World Wide Web Confer-
ence, May 2004

5. Levy, S., Gummadi, K., Dunn, R., Gribble, S., An, H. “Analysis of Internet Content Deliv-
ery Systems”. In Proceedings of the 5th Symposium on Operating System Design and
Implementation, December 2002

6. Gao, L., Dahlin, M. ”Application specific data replication for edge services”. In Proceed-
ings of the International World Wide Web Conference, May 2003

7. Kephart, J.O., Walsh, W.E., Watson, T.J. “An Artificial Intelligence Perspective on Auto-
nomic Computing Policies”, Fifth IEEE International Workshop on Policies for Distrib-
uted Systems and Networks POLICY'04, 2004

8. Agarwal, M., Bhat, V., Liu, H., Matossi, V. “Automate: Enabling Autonomic Applications
On The Grid”, http://automate.rutgers.edu/

9. Dearle, A., Kirby, G., McCarthy, A. “A Framework for Constraint-Based Deployment and
Autonomic Management of Distributed Applications”, In Proceedings of the International
Conference on Autonomic Computing, May 2004

10. Breitgand, D., Henis,E., Shehory, O. “Automated and Adaptive Threshold Setting: Ena-
bling Technology for Autonomy and Self-Management” In Proceedings of the Interna-
tional Conference on Autonomic Computing, June 2005

11. Kumar, V., Cooper B.F., Schwan K. “Distributed Stream Management using Utility-
Driven Self-Adaptive Middleware” In Proceedings of the International Conference on
Autonomic Computing, June 2005

12. Srivastava, B., Bigus, J.P., Schlosnagle, D.A. “Bringing Planning to Autonomic Applica-
tions with ABLE”, In Proceedings of the International Conference on Autonomic Comput-
ing, May 2004

13. IBM Redbook, “Taking Websphere Commerce to the Edge”, online book,
http://www.redbooks.ibm.com/abstracts/sg246456.html

14. Akkerman, A., Totok, A., Karamcheti, V. “Infrastructure for Automatic Dynamic De-
ployment of J2EE Applications in Distributed Environments”, Third International Work-
ing Conference on Component Deployment, CD’05, Grenoble, November 2005

15. Bertini, M., Cucchiara, R., Del Bimbo, A., Prati, A. “Content-based video adaptation with
user's preferences”, Proceedings of the 2004 IEEE International Conference on Multime-
dia and Expo, ICME’04, Taipei, June 2004

16. Gao, L., Dahlin, M., Zheng, J., Alvisi, L., Iyengar, A. "Dual-Quorum Replication for Edge
Services”, ACM/IFIP/USENIX, 6th International Middleware Conference, Middleware
2005, Grenoble, November December 2005

Short Papers

Ubiquitous Zone Networking Technologies for
Multi-hop Based Wireless Communications�

Namhi Kang, Ilkyun Park, and Younghan Kim��

Ubiquitous Network Research Center, Soongsil University, Seoul Korea
{nalnal,ikpark,yhkim}@dcn.ssu.ac.kr

Abstract. This positioning paper presents u-Zone (ubiquitous-Zone)
based multi-hop wireless network architecture and its components. Sev-
eral networking technologies to support reliability, enhanced scalability,
heterogeneity, internet connectivity, and mobility are briefly presented.

1 Introduction

The proposed u-Zone based network architecture is intended to support ubiqui-
tous computing paradigms without restrictions of time and place. As a promising
approach to ubiquitous networking, we focus on a hybrid MANET (Mobile Ad-
hoc Network). Both u-Zone master (u-ZM) and uT-Gateway (uT-GW) are the
key components of the architecture (see Fig. 1). They assist mobile nodes to
communicate with each other in a scalable and efficient fashion.

Table 1. Requirements of ubiquitous community networks

Requirement Proposed solutions
Robustness and efficiency Wireless backbone (u-ZM mesh)

Scalability Hierarchical network architecture based on u-ZM &
H2O routing strategies

Support of heterogeneity HRPC, DYMO(for heterogeneous OSs)
Internet connectivity uT-GW, IP Auto-configuration

Mobility IP Auto-configuration with H2O

In MANET, there exist difficulties in finding a stable route. Such a problem
becomes harder as the size of network is larger. This is mainly due to the fact that
MANET is self-configured in the absence of centralized network infrastructures.
In addition, to build MANET in the real world, we are required to consider sev-
eral challenges that include the mobility of nodes resulting in frequent topology
changing, scarce network resources, low computing power and limited energy of
nodes, and difficult handling in scalability and reliability. Such considerations
and our solutions are summarized in Table 1.
� This research is supported by the ubiquitous Autonomic Computing and Network

Project, the Ministry of Information and Communication (MIC) 21st Century Fron-
tier R&D Program in Korea.

�� Correspondent author.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 233–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

234 N. Kang, I. Park, and Y. Kim

2 u-Zone Based Community Networks

Fig. 1 illustrates the proposed u-Zone based network architecture including the
first prototype of both u-ZM and uT-GW. A large scale of MANET is divided
into a set of sub-regions. A sub-region is referred to as a u-Zone, where a u-ZM
is placed. Community network may consist of one or more u-Zones. The u-ZM
is the central component to form a hierarchical architecture. Unlike ordinary
nodes, the u-ZM has high computing power and robust electrical power as a
super node (neither a source nor a sink). Hence, the architecture is regarded as
a semi-infrastructured MANET. In some scenarios, a sink node of sensor network
may be a member node of a u-Zone. Also a mobile node is able to access Internet
or different kinds of networks through the uT-GW.

Robustness and efficiency: In the architecture, u-ZMs are interconnected
to form a infra/backbone mesh topology (i.e. wireless backbone (WBB)). If the
WBB is not used, traffic may concentrate on a few nodes resulting in high end-
to-end delay and loss probability due to congestion at the nodes and high energy
consumption of the nodes. In addition, such an approach offers a way to achieve
spatial reuse thus to enhance the performance of overall network [1].

Scalable Routing: Our routing strategy called H2O (Hierarchically Opti-
mized Hybrid) borrows the basic concept of cluster based routing protocols [1].
That is, H2O also consists of two levels: intra u-Zone routing and inter u-Zone
routing in a hybrid way. Unlike ZRP, however, H2O gives more opportunities
to select appropriate combination of routing methodologies according to the re-
quirements of applications or network environments (see Fig. 2).

Heterogeneity: To demonstrate H2O, we have implemented DYMO (Dy-
namic MANET On-demand Routing Protocol) [3] as a reactive routing protocol
and ported OLSR (Optimized Link State Routing Protocol) [4] as a proactive

Internet

uT-Gateway

u-Zone Master

uT-AP
uT-AP

inter-zone
connection

intra-zone
connections

Wired/Wireless
Infrastructure
- IEEE 802.x

 u-Zone Network
- IETF MANET
- Mesh Networks
- WLAN (802.11x)
- WPAN (UWB)

Sensor Network
(ZigBee, RFID)

NGN

Fig. 1. u-Zone based network architecture with standard trends

Ubiquitous Zone Networking Technologies 235

routing protocol. To support heterogeneity of mobile nodes, the u-ZM contains
the heterogeneous routing protocol coordinator (HRPC) which performs bridg-
ing functionality between DYMO and OLSR. Further, the DYMO have been
implemented for various systems (Linux, Windows XP, Windows CE).

IP address auto-configuration: Recently, several schemes have been pro-
posed for address allocation in multi-hop based wireless networks, but most of
schemes do not consider the global internet connectivity. For the allocation of
global-scope addresses to the mobile nodes, we have proposed a scheme called
HAA (Hybrid Address Auto-configuration) [5]. The HAA was implemented in
the form of daemon process on the Linux system.

Inter u-ZoneIntra u-Zone Note

Proactive
Routing Protocol

Proactive
Routing Protocol

- Routing information of a u -Zone is periodically updated
- u-ZM manages inter u -Zone routing information
- Scalability problem
- In case of no WBB, similar to pure proactive routing

- Best combination for delay sensitive applications
- Insensitive to any changes in topology of other u -Zones
- In case of no WBB, resulting in lots of hop counts in large

 network (bad performance)

Reactive
Routing Protocol

- Least memory requirement for routing
- Less control overhead than pure reactive routing protocol thanks

 to the hierarchical architecture
- In case of no WBB, similar to pure reactive routing

- Difficult to employ (because of high memory requirements)
- u-ZM must figure out all routing information of nodes in the

 network proactively
- Worst combination in the absence of WBB

Proactive
Routing Protocol

Proactive
Routing Protocol

Reactive
Routing Protocol

Reactive
Routing Protocol

Reactive
Routing Protocol

Fig. 2. Four different routing combinations

3 Conclusion and Further Work

In this positioning paper, we have briefly introduced the u-Zone based network
architecture and technologies necessary to meet several requirements of the fu-
ture oriented ubiquitous network. Further work aimed at integrating various
networking technologies into the u-Zone Master, thereafter building a real test-
bed to evaluate a campus scale of hybrid MANET.

References

1. N. Kang, I. Park, and Y. Kim. Secure and Scalable Routing Protocol for Mobile
Ad-hoc Networks, Lecture Notes in Computer Science, Vol 3744, Oct. 2005.

2. Z. J. Haas and M. R. Pearlman. The Zone Routing Protocol (ZRP) for Ad Hoc
Networks. IETF Internet Draft, 1998.

3. I. D. Chakeres, E. M. Royer and C. E. Perkins, Dynamic MANET On-demand
Routing Protocol, IETF Internet draft, draft-ietf-manet-dymo-03.txt, Oct. 2005.

4. T. Clausen and P. Jacquet, Optimized Link State Routing Protocol (OLSR), IETF
RFC, RFC 3626, Oct. 2003.

5. I. Park, Y. Kim and S. Lee. IPv6 Address Allocation in Hybrid Mobile Ad-Hoc
Networks. IEEE WSTFEUS 2004, May 2004

Proposal for Self-organizing Information
Distribution in Peer-to-Peer Networks

Arne Handt

Freie Universität Berlin, Institut für Informatik,
Working Group Networked Information Systems,

Takustr. 9, D-14195 Berlin, Germany
handt@inf.fu-berlin.de

www.ag-nbi.de

Abstract. The usage of peer-to-peer networks often follows a query-
response paradigm, where users initiate searches which then have to be
routed over the network efficiently. This paper proposes an approach for
self-organizing information distribution in peer-to-peer networks that in-
verts this paradigm: data objects actively travel through the net to those
nodes for which they are relevant. The underlying mechanism is rooted
in the principles of Swarm Intelligence and relies on the dissemination of
artificial pheromones, where each pheromone represents one particular
relevance criterion that applies to a given data object. Data objects leave
trails of these pheromones at each node they visit and move along gra-
dients of pheromone concentration to regions in which they are relevant.

1 Introduction

Peer-to-peer systems provide a flexible infrastructure for sharing resources. The
discovery of resources in such a network commonly follows a query-response
paradigm, where users initiate searches which have then to be routed over the
network efficiently. This paper proposes an approach for self-organizing infor-
mation distribution in peer-to-peer networks that inverts this paradigm: data
objects actively travel through the net to those nodes for which they are rel-
evant. One possible application scenario for such a system would be a novel
infrastructure for the distribution and the discovery of RSS feeds, where feed
items are not only delivered upon request, but in which each item travels as a
data object through a peer-to-peer net to those nodes that might be interested
in this item. A premise for this approach is that each node maintains a set of
criteria which can be used to determine the relevance of a given data object.

2 Algorithm

Our approach to achieving this is rooted in the principles of Swarm Intelligence
[1,2], which mimics the behavior found in animal swarms. Its core insight is that
swarms of individuals, which act locally and based on a small set of simple rules,

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 236–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Proposal for Self-organizing Information Distribution 237

can solve problems which would be impossible to solve by the individual alone.
This phenomenon of emergent behavior has been successfully exploited in nu-
merous applications and techniques, e.g. [3], [4]. Vital for our approach is the
use of artificial pheromones that represent relevance criteria and are dissemi-
nated by data objects as these travel through the net. The resulting pheromone
concentrations are exploited to optimize the network structure as well as to
control the propagation of data objects. Furthermore, a charging mechanism is
used to prevent data objects from trailing off into areas of the network where
they are not relevant: each hop reduces a data object’s charge, encountering
a matching pheromone recharges it, and a new hop requires the charge to be
above a particular threshold (see Table 1). Before travelling to a new node, the

Table 1. Outline of Data Object Behavior

at each node:
reduce charge
score data object according to local pheromones
recharge
deposit pheromones
pick up local pheromones
if charge is above threshold: copy to each of the current node’s neighbors

data object deposits all its pheromones and picks up new matching pheromones,
thus spreading them through the net. Figure 1 illustrates the behavior of a
data object representing an article on black holes which visits two nodes that
have pheromones representing the topics “Cosmology” and “Quantum Theory”
respectively. Since both topics apply to the imaginary article, it collects both
pheromones. One of the effects that are intended by the design of this behav-

A B

charge: 0.5

cosmology: 0.8

charge: 0.9
cosmology: 0.64

charge: 0.7
cosmology: 0.64

quantum theory: 0.7
quantum theory: 0.7
cosmology: 0.58

charge: 0.91
cosmology: 0.64
quantum theory: 0.56

Fig. 1. Example

ior is the emergence of gradients of pheromone concentration in the network.
Since the pheromone concentration influences data objects by recharging them,
this leads to data objects moving along concentration gradients to nodes of high
pheromone concentration, i.e. nodes to which they are highly relevant, and they
are prevented from flooding areas of the net for which they are irrelevant.

238 A. Handt

3 Related Work

Our approach bears resemblances to several systems and methods in the context
of Swarm Intelligence, some of which are shortly outlined in this section.

SemAnt [5] is an algorithm for routing queries in peer-to-peer documents
with an adaptation of the Ant Colony Optimization [4] metaheuristic. SemAnt
presupposes the use of a global taxonomy for the network and uses concepts in
the taxonomy as pheromones for query routing.

Swarmix [6] is an algorithm for peer-to-peer-based collaborative filtering. A
Swarmix peer publishes its interest profile and uses the information of other
profiles to infer the relevance of a given data object for itself.

4 Conclusion and Future Work

In this paper, we proposed a mechanism for self-organized information distribu-
tion in peer-to-peer networks. Its basic idea is that data objects travel through
the net to find nodes for which they are relevant. This is carried out by dis-
seminating artificial pheromones through the net and exploit the pheromone
concentration to optimize the data object propagation as well as the network
structure. A simulation of this approach with real-world data is currently under
development. Its purpose is to evaluate performance, reconsider design decisions
and find concrete values for the algorithm’s parameters. One vital question that
still has to be answered concerns the definition of relevance criteria. It must
allow for a fast scoring of data objects and derivation of pheromones that can
be carried by data objects through the net.

References

1. James Kennedy and Russell C. Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, 2001.

2. Mitchel Resnick. Turtles, Termites, and Traffic Jams. The MIT Press, 2001.
3. Ahmed Charles, Ronaldo Menezes, and Robert Tolksdorf. On the Implementation

of Swarm Linda. In ACM-SE 42: Proceedings of the 42nd Annual Southeast Regional
Conference, pages 297–298, New York, NY, USA, 2004. ACM Press.

4. Marco Dorigo and Gianni Di Caro. The Ant Colony Optimization Meta-Heuristic.
In David Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Optimization,
pages 11–32. McGraw-Hill, London, 1999.

5. Elke Michlmayr, Arno Pany, and Gerti Kappel. Using Taxonomies for Content-
based Routing with Ants. In Proceedings of the 2nd Workshop on Innovations in
Web Infrastructure, 2006.

6. E. Diaz-Aviles, L. Schmidt-Thieme, and C.-N. Ziegler. Emergence of Spontaneous
Order Through Neighborhood Formation in Peer-to-Peer Recommender Systems.
In Proceedings of the 1st Workshop on Innovations in Web Infrastructure, 2005.

Autonomic Security for Home Networks

Mohamad Aljnidi and Jean Leneutre

CNRS - UMR 5141 LTCI - ENST - INFRES department
46, rue Barrault - 75013 Paris - France

{Mohamad.Aljnidi, Jean.Leneutre}@enst.fr

Abstract. Home networks are becoming prevalent and interest in their
security is increasing. We introduce in this paper an autonomic security
model, in which we deal with a home network as an ad hoc network in
general, but also we consider its particularities. We show how autonomy
is required in different aspects of the proposed solution. Above all, we
address autonomy to minimize the intervention of home users, who gen-
erally lack experience, in the management of the security infrastructure.

1 Introduction

Such as all communication networks, a home network is prone to security at-
tacks. However, a home network needs special security solutions, taking into con-
sideration its ad hoc nature, in addition to other particularities, including but
not limited to, longterm inter-device relations, quasi-static topology, diversity of
networking technologies, heterogeneity of devices and inexpert administrators.

We study security of home networks in the context of a research about auto-
nomic security for mobile networks. Our main assumption is that home devices
can depend on the existence of each other under time constraints; Because a
home is an ultimate meeting point for its mobile devices, we can define T as the
longest time for which a device can be away from home. The value of T goes
from some hours to a couple of days according to mobility needs or preferences.

Security solutions for ad hoc networks address decentralization and self-
organization [1] [2]. This is also required for the special case of home networks
[3], but we can impose limitations thanks to home particularities, using the con-
stant T for instance. A Previous research [4], which we generalize and enhance in
a part of our work, defines a home network as a longterm community, and even-
tually proposes a certificate-based decentralized model. Another one [5], which
inspired us in terms of security architecture, proposes a generic design for a
self-organized security system that can be applied in the case of home networks.

2 Requirements

Devices of a home network are not homogeneous nodes. If we use asymmet-
ric cryptography we will have performance problems with light-duty devices. If
we use symmetric cryptography we will loose the chance for a better security
implementation in heavy-duty devices.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 239–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

240 M. Aljnidi and J. Leneutre

Requirement �1: A security process should be able to adapt itself to the
cryptographic capabilities of the involved devices.

Devices of a home network may belong to a single resident. In this case, we
can consider that there is a trust relationship between devices. We may have
the same situation with devices that belong to many residents who trust each
other. In general, a home network would be shared by many family members
of different ages, and maybe temporary users such as guests. In this case for
example, trust is not necessarily complete between devices.

Requirement �2: A security process should refer, when needed, to autho-
rization rules defined according to levels of inter-device trust.

A home network is subject to variations in device population [4]. According
to �2, and in terms of generalization of [4], we also deal with variations in
trust levels. Moreover, our model implies variations in the security management
infrastructure. In all cases, a variation might compromise the network.

Requirement �3: Variations in device population, inter-device trust levels
or security management infrastructure should happen securely.

A home device is usually expected to make part of a home network over a
long period. In other words, longterm inter-device relations are to be established.
It’s more efficient to secure the whole relation between two devices instead of
securing each communication separately. Besides, we should avoid compromising
the network during a relation establishment. On the other hand, according to
�1 and �2, we need to categorize secure relations according to the differences
between the involved devices in terms of capabilities and trust levels.

Requirement �4: Inter-device secure relations should be securely established
and categorized according to device capabilities and trust levels.

We designate certain heavy-duty devices as authority nodes. The main role of
such devices is to manage variations. Besides, they may assume a security server
role during the establishment of secure relations, especially when light-duty de-
vices are involved. Actually, the constant T assumption is made to prove that
authority nodes can always be considered available for relation establishments.
This eventually implies a limitation of decentralization, which we can sometimes
avoid if the relation establishment is between heavy-duty devices. Anyway, this
limitation can be acceptable since relation establishments are occasional in a
home network. However, this authority-related type of centralization becomes
important if it persists during data exchange in a secure relation.

Requirement �5: Devices bound by a secure relation of any category should
be able to communicate securely without any contact with a third party.

Each device in the home network stores security information for its relations.
An authority node stores additional security information to be used as manage-
ment data during variations and relation establishments. Security management
data are updated on an authority node after the variations that involve it. An
authority node may not be involved in a variation, but it is expected afterward
to have updated its security management data accordingly.

Requirement �6: Authority nodes should be able to synchronize their se-
curity management data after network variations.

Autonomic Security for Home Networks 241

3 Device Categories

We categorize home devices according to their computation and storage capabil-
ities (�1). We suppose that a security platform is to be installed on each home
device before adding it to the network. At installation time, a device evaluation
module automatically determines the device category according to a security
configuration policy (self-configuration [6]). The installed modules work either
as applications, or as the constituents of an autonomic security layer supporting
the application layer. In both cases, the installed platform is irrespective of the
underlying networking technologies.

We consider two device categories: LD (Light-duty Device): the device can
support symmetric cryptography and store a limited set of symmetric keys,
and HD (Heavy-duty Device): the device can be an LD, and besides, it can
support asymmetric cryptography and store its asymmetric key data and a set
of certificates and access control policies.

We suppose that the security system can be asked to exclude a certain com-
munication port on a device. This exclusion is used to insecurely communicate
with a device that can’t even be an LD, which avoids constraints on existing net-
works. This is also useful for isolation of external communications. Nevertheless,
the data exchanged internally with an excluded port is automatically monitored
according to a protection policy(self-protection [6]).

4 Security Model

The home network is a set of device communities. A mutual trust relation relies
the devices of one community (�2). A device is in the security perimeter of the
network if it belongs to one of its communities. A single HD in a community is
selected to be its authority node, while any other HD of it can be a delegated
authority node. The loss or breakdown of a main or a delegated authority node
is automatically detected, and the system eventually designates another HD as
a replacement (self-healing [6]). We suppose that the home network includes one
HD at least. This guarantees that there is always an HD that can be designated
as a main or a delegated authority node in many communities, especially in
temporary cases of emergency. Delegated authority nodes assume security man-
agement temporarily while accompanying devices away from the home network
coverage for a period greater than T. This way, neither a variation nor a relation
establishment will be blocked for more than a period of T. In other words, we
can export a home subnetwork with all the functionalities of the security system.

We define nine secure network variations (�3): Two variations are related
to trust levels: community integration or revocation. Three others are related
to the security management infrastructure: authority replacement, delegation
or delegation termination. And finally, four variations are related to the device
population: insertion, removal, banishment or reinsertion. Reinsertion is used to
cancel a banishment. An autonomic operation of synchronizing security manage-
ment data among authority nodes (self-optimization [6]) is carried out within
and after variations (�6).

242 M. Aljnidi and J. Leneutre

Secure Authority-Authority Relations (AAR) are automatically created after
community integrations, and secure Authority-Device Relations (ADR) are au-
tomatically created after device insertions or reinsertions (self-configuration [6]).
Creation and distribution of keys and certificates automatically take place when
AAR and ADR relations are established.

A secure relation can be created between any two devices of the network
(�4), if they are in the security perimeter, even if they don’t belong to the same
community. When such a relation is created between two devices, they can com-
municate securely using the distributed keys or certificates and independently
of any other device in the network (�5). Authentication protocols, which may
involve authority nodes depending on device categories, are needed (�4) for es-
tablishing an HHR (HD-HD Relation), an HLR (HD-LD Relation) or an LLR
(LD-LD Relation). A relation-dedicated symmetric key is created for an HLR or
an LLR, while certificates are used in an HHR.

Authorization policies are exchanged (�4) in the context of an AAR, and
during the establishment of a secure relation between two devices of different
communities (�2). We categorize the result as a Low-Trust Relation (LTR),
compared to High-Trust Relations (HTR) between the devices of one community.
HD devices can store authorization policies, while an LD asks its interlocutor
for permission proofs during communications in the context of an LTR.

5 Conclusion

We presented the main ideas and guidelines of a security model, which is the
basis of our first research work in terms of autonomic security solutions for
mobile networks. It opens the door for future research tracks, including but not
limited to, intra-device autonomic security elements, inter-community autonomic
security information negotiation and synchronization, and specification of self-
management high-level policies for mobile networks.

References

1. L.M.Feeney, B.Ahlgren, A.Westerlund: Spontaneous networking: an application-
oriented approach to ad hoc networking. Communications Magazine, IEEE 39
(2001) 176–181

2. L.Zhou, Z.J.Haas: Securing ad hoc networks. IEEE Network (1999)
3. C.M.Ellison: Home network security. Intel Technology Journal 6 (2002)
4. N.Prigent, C.Bidan, J-P.Andreaux, O.Heen: Secure long term communities in ad

hoc networks. In: First ACM workshop on Security of Ad Hoc and Sensor Networks,
Fairfax, Virginia (2003)

5. T.Messerges, J.Curkier, T.Kevenaar, L.Puhl, R.Struik, E.Callaway: A security de-
sign for a general purpose, self-organizing, multi-hop ad hoc wireless network. In:
First ACM workshop on Security of Ad Hoc and Sensor Networks, Fairfax, Virginia
(2003)

6. J.O.Kephart, D.M.Chess: The vision of autonomic computing. Computer 36 (2003)
41–52

Hovering Data Clouds: A Decentralized and
Self-organizing Information System�

Axel Wegener1, Elad M. Schiller2, Horst Hellbrück1,
Sándor P. Fekete2, and Stefan Fischer1

1 Institut für Telematik, Universität zu Lübeck
{wegener, hellbrueck, fischer}@itm.uni-luebeck.de

http://www.itm.uni-luebeck.de
2 Institut für mathematische Optimierung, Technische Universität Braunschweig

{s.fekete, e.schiller}@tu-bs.de
http://www.math.tu-bs.de/mo

Abstract. With ever-increasing numbers of cars, traffic congestion on
the roads is a very serious economic and environmental problem for our
modern society. Existing technologies for traffic monitoring and manage-
ment require stationary infrastructure. These approaches lack flexibility
with respect to system deployment and unpredictable events (e.g., ac-
cidents). Moreover, the delivery of traffic reports from radio stations is
imprecise and often outdated. In the project AutoNomos we aim at devel-
oping a decentralized system for traffic monitoring and managing, based
on vehicular ad-hoc networks (VANETs). Our objective is to design a
system for traffic forecasting that can deliver faster and more appropri-
ate reactions to unpredictable events. In our design, cars collect traffic
information, extract the relevant data, and generate traffic reports. A key
concept are so-called Hovering Data Clouds (HDCs), which are based on
the insight that many crucial structures in traffic (e.g., traffic jams) lead
an existence that is independent of the individual cars they are composed
of. The result is an elegant, robust and self-organizing distributed infor-
mation system. In this paper we demonstrate first experimental results.

1 Introduction

Mobility and individuality are cornerstones of our modern society; this explains
why car traffic has become so crucial for many aspects of our life. Unfortunately,
this importance leads to ever-increasing numbers of cars; given the limited road
capacities, frequent traffic hold-ups are common in urban regions and highways
all over the world. Beyond the individual loss of freedom and mobility due to
time spent in blocked traffic, these predicaments also have a very serious large-
scale impact, due to increasing pollution and economic loss. As a consequence,
ever-increasing efforts have been spent on optimization of road usage by means
of traffic monitoring and management.
� Supported by DFG Focus Program “Organic Computing” (SPP 1183) project “Au-

toNomos” (Fe 407/11-1).

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 243–247, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

244 A. Wegener et al.

Traditional online traffic forecasting systems require stationary infrastructure,
such as magnetic loops, roadside relay stations, a massive central processing unit,
and finally radio stations that broadcast the generated traffic reports (see [1]).
Unfortunately, this centralistic approach suffers from a number of inherent design
problems: a huge amount of data has to be gathered and communicated to a
central server; the necessary central computations are enormous; and the results
have to be distributed and implemented in a timely fashion.

Quite often, such a centralized approach is not just complicated, but also
inappropriate. Many phenomena are local by nature, so they only affect a subset
of traffic participants. Moreover, fast and flexible response is essential for defusing
many local traffic situations. All this makes a distributed approach more flexible,
faster and more accurate for dealing with dynamic, local traffic phenomena.

Recent advances in wireless communication technologies such as WLAN and
GPS allow short-to-medium-range communication systems among vehicles on an
ad-hoc basis. Vehicular ad-hoc networks (VANETs) aim at a number of commer-
cial applications such as the improvement of car safety (see [2], [3]) or entertain-
ment such as online gaming. The same equipment is also suited for decentralized
traffic forecasting. In contrast to a fixed infrastructure, this approach provides
precise results with cost-efficient equipment [4].

Existing centralized implementations require carefully planning with respect
to the location of the sensing infrastructure. If the number of sensors is too
small or their position is suboptimal, forecasting precision is compromised. On
the other hand, just the situations that are critical (e.g., traffic jams) provide a
sufficient number of cars to form a VANET and collect traffic statistics through-
out the road, making a distributed approach simple and appealing.

Our approach provides fine granularity that improves the forecasting precision;
it can also adapt more quickly to sudden, unpredictable events like accidents and
traffic congestions, which defy even advanced forecasting models (see [5]).

This work is part of a project that aims at develop a system that provides the
drivers with online reports of the current (and upcoming) traffic condition.

2 Design Criteria and System Concepts

Traditional system designs and ad-hoc unicast approaches such as [6] do not meet
our requirements of scalability (i.e., the number of cars) and the unpredictable
nature of car movements. Moreover, flooding of unrefined traffic information
across the network does not scale.

In the project AutoNomos, we take a different, localized and distributed ap-
proach, in which cars collect information about traffic events, aggregate the
relevant data, and generate dynamic traffic reports in a self-organized manner.
A crucial concept for this challenge is what we call a hovering data cloud (HDC).

HDCs are motivated by traffic phenomena that exist and prevail independent
of the individual vehicles they consist of. They are self-organizing entities that
are not restricted to particular hosting nodes, nor to fixed regions. This makes
them somewhat similar to the virtual mobile nodes described in [7], but the

HDCs: A Decentralized and Self-organizing Information System 245

distributed concept allows for a wider range of structures. Practically speaking,
HDCs are associated with phenomena such as traffic jams, they are responsible
for capturing the phenomena’s events and characteristics, and they arise with
the onset of the phenomenon. At any time, an HDC has a distinct origin defined
by a center and an expanse, i.e. the propagation range. Both can change over
time, accounting for the represented event. In this first paper we focus on the
description of a traffic density with motionless HDCs.

HDCs expand when nodes selectively forward HDC messages in the direction
of interest, e.g. towards traffic that is directed to HDC’s origin. The forwarding is
bounded by the parameter expanse of the HDC, which depends on the underlying
traffic event. To extend the propagation range with affordable bandwidth, HDCs
are aggregated by their similarity of underlying events.

The desired behavior can only be achieved by self-organizing systems, as the
set of hosting nodes changes over time. Locality is also required. The novelty
of our approach is that we not only take the traditional storage-centric point of
view that assigns the responsibility for data processing and data forwarding to
a particular set of nodes.

3 A Distributed Algorithm for Implementing HDCs

A HDC includes a generic dataset that hosts traffic statistics. Cars that travel
through an HDC region inform the other cars in the region about their present
location and datasets. Periodically, a single car updates the HDC with its recent
traffic statistics and initiates the propagation of HDC messages. The initiating
car can be the one that is closest to the HDC origin.

We have taken an approach of random broadcasts for message propagation
and neighborhood discovery, because of the elegant balance between communi-
cation loads and refresh rates (see the MILE project [8] for more details). The
update interval for HDC messages creation and delivery set the trade-off be-
tween network loads and refresh rates. In order to reduce the communication
overhead, we limit the lifetime of HDCs in absence of refreshing HDC messages.
Their propagation expanses are restricted to a predefined “horizon” standing for
area (and time) of interest of cars.

We have implemented an HDC that is fed by a simple periodic event: the mea-
surement of car density in a stationary region. Possible extensions may include
traffic information such as drive-through speed and lane change behavior. These
parameters can reveal interesting irregularities, say, due to blocked lanes or road
hazards that drivers are trying to avoid. The potential of the HDC concept to
detect unpredictable events is far greater than that of existing implementations.

4 Evaluation

We present simulation results for stationary events that monitor car density
on predefined locations. These events are set every 1 km (where the events’
radius is set to 500 m) on a road with two lanes in one direction. The traffic

246 A. Wegener et al.

simulator SUMO [9] generates appropriate movement traces of cars (see [10]).
We extended the network simulator ns2 [11] with our HDCs algorithm and fed
ns2 with the mobility traces. The communication model is based on the standard
IEEE 802.11 with a communication range set to 250 m. We produce variations
of the car density and compare it to the propagated and received HDC messages.
We are mainly interested in the accuracy of the measurements (car density and
time), propagation delay and network overhead produced by the HDCs.

The flow of cars starts with 1500 cars per hour, and increases sharply to 4000
during the simulation. The average speed is stable at around 26 m/s. Figure 4.a
depicts the real number of cars passing the 6.5 km mark of the road.

Figure 4.b and Fig. 4.c show the projected traffic density at 6.5 km as received
by cars 5.5 km behind (at position 1 km). Measurements are illustrated as points
in the curves. In the first simulation run (Fig. 4.b) the update interval for HDC
messages is set to 2.5 s, which consumes about 19 kbit/s of bandwidth per km of
the road. In the second run the update interval is increased to 5 s (Fig. 4.c), which
reduces bandwidth consumption to approximately 9 kbit/s. Note that the trade-
off between the HDC message update interval and the bandwidth consumption
affects the granularity of traffic reports, because every point on the curve in
Fig. 4 represents a received HDC message. Moreover, the curves show that the
HDC message update interval influences the propagation delay. Delay decreases
from 66 s in Fig. 4.c to 22 s in Fig. 4.b. With advanced forwarding techniques
we aim at further decreasing the delay without increasing bandwidth.

2000

3000

4000

2000

3000

4000

2000

3000

4000

 0 100 200 300 400 500 600 700 800

 c
ar

s
pe

r
ho

ur

 time in seconds

(a) Traffic at 6.5 km.

(b) HDC’s reports on traffic at 6.5 km (broadcasts every 2.5 s).

(c) HDC’s reports on traffic at 6.5 km (broadcasts every 5 s).

Fig. 1. Car density over time. Comparison of real car density and that reported by
HDC messages.

HDCs: A Decentralized and Self-organizing Information System 247

5 Conclusion and Outlook

The AutoNomos project proposes a new approach for reporting traffic conditions.
In contrast to centralized implementations, we facilitate a self-organizing car-to-
car communication system. In this work, we introduce the key design concepts
for sampling and reporting traffic information. The concept of HDCs allows
information flow that is independent of the underlying car flow. Our preliminary
tests demonstrate the feasibility of the proposed approach and the HDC concept.

A key topic in this project is to illuminate chain reaction scenarios that may
occur when reporting on traffic. For example, the traffic congestion in a network
of roads may oscillate, or the Braess paradox may appear (see [12]). Traffic
forecasting services that includes additional traffic management aspects, e.g.
route planning and road hazard notification, can increase drivers’ confidence.
We plan to investigate pattern recognition techniques for marking and mapping
road hazards. Moreover, we will experiment with large-scale and complex traffic
settings, and develop novel design concepts.

References

1. Mazur, F., Chrobok, R., Hafstein, S., Pottmeier, A., Schreckenberg, M.: Future
of traffic information - online-simulation of a large scale freeway network. IADIS
International Conference WWW/Internet 2004 1 (2004) 665–672

2. Franz, W., Hartenstein, H., Mauve, M.: Inter-Vehicle-Communications Based on
Ad Hoc Networking Principles – The FleetNet Project. Universitätsverlag Karl-
sruhe (2005)

3. Car2car communication consortium. Web (2005) http://www.car-to-car.org/.
4. Varshney, U.: Vehicular mobile commerce. Computer 37(12) (2004) 116–118
5. Chrobok, R., Pottmeier, A., Marinosson, S., Schreckenberg, M.: On-line simula-

tion and traffic forecast: Applications and results. In: Proc. of the Internet and
Multimedia Systems and Applications. (2002) 113–118

6. Nadeem, T., Dashtinezhad, S., Liao, C., Iftode, L.: Trafficview: A scalable traffic
monitoring system. In: IEEE International Conference on Mobile Data Manage-
ment. (2004) 13–26

7. Dolev, S., Gilbert, S., Schiller, E., Shvartsman, A., Welch, J.: Autonomous virtual
mobile nodes. In: 3rd Workshop on Foundations of Mobile Computing (DIAL-M-
POMC). (2005)

8. Hellbrück, H., Fischer, S.: Mine and mile: Improving connectivity in mobile ad-hoc
networks. Mobile Computing and Communications Review MCCR 8(4) (2004)
19–36

9. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: Sumo: An open-source traf-
fic simulation. In: Proc. of the 4th Middle East Symposium on Simulation and
Modeling. (2002) 183–187

10. Krauß, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of
traffic flow. Physical Review E 55(304) (1997) 5597–5602

11. University of Southern California: Ns-2: Network simulator-2. Web (2005)
http://www.isi.edu/nsnam/ns/.

12. Murchland, J., Braess, D.: Braess’s paradox of traffic flow. Transpn. Res. 4 (1970)
391–394

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 248 – 250, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Defending Grids Against Intrusions

Alexandre Schulter, Kleber Vieira, Carlos Becker Westphall, and Carla Westphall

Networks and Management Laboratory, Federal University of Santa Catarina,
Florianopolis, Brazil

{schulter, kleber}@inf.ufsc.br, {westphal, carla}@lrg.ufsc.br

Abstract. Current intrusion detection technology is limited in providing
protection against the intrusions that may violate the security of grids. We
present the mechanisms necessary to integrate a grid-based intrusion detection
system with other systems so as to provide protection against all the intrusions a
grid may be subjected to. A case study that makes use of simulations and a
proof-of-concept implementation is presented as an early evaluation.

Keywords: Computational grids; security; intrusion detection.

1 Introduction

Computational grids are emerging as tools to facilitate the secure sharing of resources
in heterogeneous environments. Security is one of the most challenging aspects of
grid computing and Intrusion Detection Systems (IDS) [1] have an important role in
grid security management. IDSs are responsible for the detection of intrusions in
information systems and the responses to them, usually as alert notifications.

As described in our previous work [2], the need for intrusion detection in grids
and the shortcomings of the available solutions motivated our Grid-based Intrusion
Detection System (GIDS) approach. To cover all the classes of intrusions a grid may
be subjected to, our recommended GIDS acts as a high-level component that utilizes
functionality of lower-level Host-based IDS (HIDS) and Network-based IDS (NIDS)
provided through inter-IDS communication.

Fig. 1. Integration of GIDS with lower-level IDSs

GIDS integration with the other IDSs is illustrated in Fig.1. To achieve the desired
security level, HIDS and/or NIDS are installed at certain grid nodes and network
domains and share relevant information with GIDS. The detection of the typical host
computer and network attacks is then summed with the detection of grid-specific
attacks and behavior anomalies of grid users.

 Defending Grids Against Intrusions 249

2 IDSs Integration

The integration of GIDS with lower-level IDSs can be achieved if the following
requirements are supported: (a) the sending of alerts from lower-level IDSs to warn
GIDS about locally detected intrusions; (b) the sending of alerts from lower-level
IDSs to warn GIDS about grid attack trails; (c) the sending of audit data from HIDS
to GIDS; and (d) standard communication between HIDS/NIDS and GIDS.

The lower-level IDSs must (a) alert GIDS about any intrusions detected locally in
their acting domain. Alerts of any attack trails that can be correlated by GIDS with
other trails to detect grid-specific attacks must also be (b) sent by the IDSs.

To identify misuse committed by grid users, GIDS must analyze their behavior
and this is done with resource usage data. Host-based audit data sources are the only
way to retrieve information about user activities in a grid and, therefore, HIDS are
responsible for (c) sending audit data to GIDS.

As lower-level IDSs might be heterogeneous and write their alerts in different
formats, interoperability is harder without the use of (d) standards. It is demanded that
they speak the same language: the IDMEF message format and the IDXP protocol [3].

Fig. 2. Interactions between users, resources, and IDSs

The interactions between users, grid infrastructure, and the IDSs are depicted in
Fig. 2. HIDS receive resource usage records from grid resource meters [4] and syslog
[1] data from the operating systems. GIDS, on the other hand, receives and analyzes
IDMEF/IDXP alerts sent by the various HIDS and NIDS. The content of these alerts
refers to typical host and network attacks, trails of possible grid attacks, and user
resource usage records used to identify the occurrences of misuse.

3 Case Study

To evaluate the mechanisms described in the previous section, a case study of a
simulated grid environment was performed with GridSim [5]. In this simulation, user
applications (gridlets) were scheduled for processing at the grid’s hosts and IDMEF
messages were generated out of gridlet resource usage records. These messages were

250 A. Schulter et al.

sent to a prototype GIDS, simulating the HIDS interactions (Fig. 3). GIDS applied a
feed forward neural network that was trained to identify great deviations in the
demanded computational power for the gridlets submitted by each user.

Fig. 3. Simulation environment

In the training and experimentation phases the net was fed with a certain volume
of input data obtained from the last gridlets submitted by the users. A lower number
of gridlets resulted in a lower volume of data analyzed by the net and a greater
difficulty for it to learn and to identify anomalies caused by the possible intruders.

4 Conclusions

The purpose of this work is to describe the mechanisms necessary to integrate a GIDS
with lower-level IDSs in order to provide protection against all the possible grid
intrusions. As described in Section 2, the use of standard protocols and formats is
focused and makes possible the interoperability of heterogeneous systems. The
case study of a simulated grid and a prototype GIDS implementation described in
Section 3 shows the feasibility of the mechanisms, although further experimentation
is needed for a more comprehensive evaluation.

References

1. Debar, H. Dacier, M., Wespi, A.: Towards a Taxonomy of Intrusion-Detection Systems.
Int. J. Computer and Telecommunications Networking, Vol. 31, No. 9 (1999) 805-822

2. Schulter, A., Navarro, F., Koch, F., Westphall, C.: Towards Grid-based Intrusion Detection.
In: Proc. 10th Network Operations and Management Symposium, Canada (2006)

3. Brandão, J. E., Fraga, J. S., Mafra, P.: A New Approach for IDS Composition. In: Proc.
IEEE 2006 International Conference on Communications, Istambul, Turkey (2006)

4. Lim, D. et al.: MOGAS: A Multi-Organizational Grid Accounting System. In: Int. J. on
Information Technology, Singapore, Vol. 11, No. 4 (2005)

5. Sulistio, A., Poduvaly, G., Buyya, R., Tham, C.: Constructing A Grid Simulation with
Differentiated Network Service Using GridSim. In: Proc. of the 6th Int. Conference on
Internet Computing, Las Vegas, USA (2005)

ORCA – Towards an Organic Robotic Control
Architecture�

Florian Mösch1, Marek Litza1, Adam El Sayed Auf1, Erik Maehle1,
Karl E. Großpietsch2, and Werner Brockmann3

1 University of Lübeck, Institute of Computer Engineering, Lübeck, Germany
2 Fraunhofer Institute of Autonomous Intelligent Systems, St. Augustin, Germany
3 University of Osnabrück, Institute of Computer Science, Osnabrück, Germany

Abstract. We are working on a modular and self-organizing component
based software architecture for autonomous mobile robots. To reach a
certain degree of fault-tolerance without analyzing all kinds of possible
error conditions, “Organic Components” will be added to the system
to detect recognize variations from a defined “normal state” and then
try to find counter measures. Once an action is identified to help in
certain situations, the component will store that information and use it
if a similar situation is reached later. The system will be self-optimizing
and self-healing. We started to evaluate adaptive filters as one possible
implementation for components detecting deviations from the normal
system state.

1 Requirements for an Organic Robotic Control
Architecture

We develop and evaluate a new software architecture for mobile robots. Au-
tonomous acting robots are complex systems interacting in a unstructured envi-
ronment. To make them more reliable, state of the art fault-tolerance methods
can be used. While the results may be satisfying, the costs for such a system
grow high. Often, a compromise must be found between fault-tolerance and ro-
bustness on the one hand and the costs on the other. This applies especially
where systems are designed for a mass market like entertainment systems or
house-keeping robots. In this area, current fault-tolerance methods would rise
the system cost unacceptable high. Contrariwise, robots that shall navigate in
an unstructured, changing environment like typical households are, have to be
tolerant against unforeseen situations, defects, etc. What makes conventional
fault-tolerant systems so expensive is the analysis of the faulty situations that
could occur.

Instead of analyzing all these erroneous situations that could occur, we define
the “normal” or “healthy” situation in which our system shall stay. The system
shall detect when it leaves this defined “good” working area and find back to
a normal state. Therefore the system must know which possible actions exist
� This work is supported by DFG (SPP 1183, MA 1412/7-1).

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, pp. 251–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

252 F. Mösch et al.

to change its own state. Our system will learn like an organic system on its
own which action is most appropriate in a particular “bad” situation it may be
confronted with.

Another problem we address is the growing complexity of software for ro-
botic systems. Typical robot software systems are built in a modular way and
are hierarchically organized. Software modules shall be reusable and easy to
“compose” to new systems. Our software components can describe themselves
and autonomously combine each other like peers in a decentralized peer to peer
network.

To monitor other components and change their parameters or structure if the
system leaves its defined normal working area, “Organic Components” will be
added to this self-organizing structure.

Our software architecture is built from components that use a simple interface
to exchange data or change parameters of a component. The interface is similar
to the one of an MCA2 module [4]. Container components can enclose a group
of components. Systems can so be organized hierarchically.

Instead of composing a complex software system manually from these mod-
ules, the components will organize themselves, i.e. the connections between them
will not necessarily be defined by the system designer but whenever possible are
established autonomously.

Each component is self-explanatory. It announces to other components which
data it produces and which data it needs for its own operation. Matching com-
ponents will be connected like peers in a peer to peer network.

Simple systems can be built using primitive modules that sample sensor infor-
mation, process the sensor data and control actuators. Complementing modules
could change an actuator’s parameter to optimize a robot for speed or energy
consumption. Disabling, removing or replacing that component later would leave
the robot fully functional. If an actuator fails, but redundant parts exist, an op-
timization component could be (re)activated to change parameters so that the
robot works best with the remaining parts. Activating these components in sit-
uations that can be detected as “not normal” can lead to self-optimizing and
self-healing systems.

2 Self-organizing Components

Components are self-explanatory and can define the necessary connections on
their own. A component’s description contains a description of all signals and
parameters of the component. A signal description consists of type and a name,
optionally “normal” values or ranges can be defined. Other components can
interpret this data and take countermeasures if they detect discrepancies.

In order to self-organize, the components need to share a common interface to
interact and e.g. publish and parse their descriptions. Two kinds of components
will be generated from a common code-base: components that interact locally
via function calls within one process and distributed components that use a
network layer and build a “real” peer to peer network. All implementations of

ORCA – Towards an Organic Robotic Control Architecture 253

one component share one identical interface description which is similar to the
components “self-description”.

3 “Organic” Components

In order to accomplish an organic system, the architecture will be supplemented
by generic “organic components”. These components can be loaded statically or
dynamically when resources are available and then monitor other components
behavior. Like the cells of an immune system, our organic components can mon-
itor each other and detect when they look “strange” i.e. their parameters are
not in their normal range as defined in a components self-description. ([5],[6],[7])

When an organic component detects a faulty component it tries to change
the components parameters to bring the component back to normal operation.
If such an attempt is successful, the component may store this information and
use it when a similar situation occurs later. This is similar to a biological immune
system which “learns” how to fight common diseases.

Another approach to detect a components malfunction is to monitor its be-
havior over time independently from its defined normal state.

Adaptive filters [8] are well suited to detect a change in a signal’s long term
behavior. Generic adaptive filters may be added to the system, monitor a com-
ponent’s signals and activate other components when a component appears to
change its behavior.

References

1. German Organic Computing Initiative, http://www.organic-computing.de
2. Brockmann, W., Maehle, E., Mösch, F.: Organic Fault-Tolerant Control Architec-

ture for Robotic Applications. 4th IARP/IEEE-RAS/EURON Workshop on De-
pendable Robots in Human Environments, Nagoya, Japan (2005)

3. Schoeler, T., Mueller-Schloer, C.: An observer/controller architecture for adaptive
reconfigurable stacks. In: M. Beigl, P. Lukowicz (eds.): Systems Aspects in Or-
ganic and Pervasive Computing. ARCS2005. Springer LNCS 3432, Berlin, Heidel-
berg (2005) 139–153

4. Scholl, K.U., Albiez, J., Gassmanni, B.: MCA – An Expandable Modular Controller
Architecture. In: 3rd Real-Time Linux Workshop. Milano, Italy (2001)

5. Greensmith, J., Cayzer, S.: An artificial immune system approach to semantic docu-
ment classification. 2nd Int. Conference on Artificial Immune Systems ICARIS 2003,
LNCS 2787, Springer-Verlag (2003) 136–146

6. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a
computer. Proc. of 1994 IEEE Symposium of Security and Privacy, IEEE Computer
Society Press (1994)

7. Lee, D., Jun, H., Sim, K.: Artificial immune system for realization of cooperative
strategies and group behavior in collective autonomous robots. Proc. of the 4th Int.
Symposium on Artificial Life and Robotics (1999) 232–235

8. Grosspietsch, K.-E.: Adaptive Filters for the Dependable Control of Autonomous
Robot Systems, 19th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS’05) – Workshop 16 (2005) 284b.

Posters

Active Element Network with P2P Control
Plane

Michal Procházka1,3, Petr Holub1,3, and Eva Hladká2,3

1 Institute of Computer Science
2 Faculty of Informatics,

Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
3 CESNET z. s. p. o., Zikova 4, 160 00 Praha 6, Czech Republic
michalp@ics.muni.cz, hopet@ics.muni.cz, eva@fi.muni.cz

Abstract. Multi-point data distribution for synchronous multimedia
communication poses interesting problem for networking environment
and it is usually implemented by either native or virtual multicast. We
describe and evaluate a scalable network of Active Elements (AE) that
implements user-empowered virtual-multicast overlay network for syn-
chronous data distribution and processing in the network. The AE net-
work is based on strict separation of control plane and data plane. The
control plane is organized as peer-to-peer network in order to achieve
robustness and user-empowered approach while sacrificing efficiency to
some extent. The data plane which handles the actual data distribution
is optimized for efficiency and allows pluggable implementation of differ-
ent distribution models. Each plane solves robustness and scalability by
own.

We present a prototype implementation with control plane based on
JXTA peer-to-peer substrate. Control plane is responsible for managing
and controlling AEs in the AE network and also to gather information
about state of AE network for the data distribution schemes. Prototype
consists of stand-alone modular application which implements server side
and also client side. We have evaluated control plane behavior, scalability,
robustness, and efficiency. In order to achieve better results in robustness
and scalability of control plane, we have had to do specific changes into
the JXTA peer-to-peer substrate. The results show that AE network can
grow significantly without any restriction because there is linear depen-
dency between number of exchanged messages and number of AEs in
the network. Growing number of the AEs in the network does not have
influence on the number of messages send and receive by each single AE.
Robustness of the AE network also reaches very high level. As a conse-
quence to our changes in JXTA, the latency when AE recognizes failure
of the neighbor AE decreased from 60 s to about 1 s. Both attributes can
be adjusted to better fit host environment and needs.

Generally AE network is used for any multimedia applications, that
rely on RTP/UDP data transmission like MBone videoconferencing tools
(RAT, VIC) and shared whiteboard (WB/WBD). Also unidirectional
”broadcasting” applications like VideoLAN Client can utilize AE net-
works for distribution of their data.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, p. 257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Monitoring Infrastructure for the Digital on-demand
Computing Organism (DodOrg)

Rainer Buchty

Universität Karlsruhe (TH), Institut für Technische Informatik, 76128 Karlsruhe, Germany
buchty@ira.uka.de

Abstract. The Digital on-demand Computing Organism (DodOrg) is a novel sys-
tem concept based on biological concepts. Major part of DodOrg is a sophisticated
monitoring infrastructure spanning all system layers from hardware to applica-
tion, providing necessary information for system surveillance and the adaptive
processes triggered by an organic middleware and the low-power planning.

The Digital on-demand Organism (DodOrg) [BBB+06] is an ambitious project funded
by the Deutsche Forschungsgesellschaft (DFG) within the priority program 1183
(SPP1183) “Organic Computing”. The idea behind DodOrg is to adopt biological con-
cepts for use within digital architectures.

DodOrg is based on a heterogeneous, adaptive multicore architecture comprising of
several processing elements (cells) connected through a peer-to-peer network. Hence
each cell contains dedicated router functionality in addition to its core functionality.

Independent monitoring is distributed over the entire system architecture by embed-
ding monitoring functionality into each part of the system. Hence, monitoring is also
part of every cell. Basic preprocessing (semantic compression) on hardware level mini-
mizes communication overhead. Aggregate monitoring functions can be realized using
dedicated monitoring cells or monitoring organs created from arbitrary processing ele-
ments.

Monitoring must closely interface with the planning infrastructure, i.e. organic mid-
dleware and low-power planning, using dedicated message and communication types
(defining content, frequency, and level of autonomy) and communication modes (uni-
cast, multicast, or broadcast).

References

[BBB+06] Jürgen Becker, Kurt Brändle, Uwe Brinkschulte, Jörg Henkel, Wolfgang Karl,
Thorsten Köster, Michael Wenz, and Heinz Wörn. Digital On-Demand Computing
Organism for Real-Time Systems. In Wolfgang Karl, Jürgen Becker, Karl-Erwin
Großpietsch, Christian Hochberger, and Erik Maehle, editors, ARCS’06 Workshop
Proceedings, pages 230–245. Gesellschaft für Informatik e.V., March 2006. Lecture
Notes in Informatics (LNI) P-81, ISBN 3-88579-175-7.

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, p. 258, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

H. de Meer and J.P.G. Sterbenz (Eds.): IWSOS 2006, LNCS 4124, p. 259, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Autonomic Network Management for Wireless
Mesh and MANETs

Shafique Ahmad Chaudhry, Ali Hammad Akbar, Faisal Siddiqui, and Ki-Hyung Kim

Division of Information and Computer Engineering, Ajou University, Korea
{shafique, hammad, faysal, kkim86}@ajou.ac.kr

Extended Abstract. The realization of the envisioned ubiquitous computing paragon
has resulted into new breeds of hybrid networks, e.g., u-Zone [1]. In u-Zones, a high-
speed wireless mesh is used as the backbone—allowing MANETs nodes to be
connected as a stub network. Hybrid in their nature, these networks belong to the
generation of networks that deal with high levels of heterogeneity, mobility, and
variability.

The existing network management architectures address either MANETs [2] or
mesh [3] in isolation, and do not meet the dynamic paradigm and fluctuating
requirements for u-Zone networks. Highly dynamic node and network configurations,
management and network tasks excessively overlapping, mobility, unpredictable
environment, and lack of centralized control make continuous human-supervised
management almost impossible. The catering of such challenges, plus the continuous
growth factor, demand an autonomous management architecture that facilitates all self-
management aspects. The challenges of dynamic configuration, on-the-fly resource
allocation, and reliable service provisioning can hardly be met without embedding a
robust context-aware mechanism within network management framework.

Our contribution is to provide an autonomic, policy-based, context-aware and
hierarchical manager-agent framework that is adaptable and robust to network
variations, node failures, and dynamic user requirements. The policy-based framework
provides flexibility and scalability by enabling the network operators to specify the high
level networking requirements, in terms of configuration, healing, accounting,
optimization and general policies. The context information is gathered, analyzed and
synthesized to predict the current and future network behavior. Correspondingly,
required management functions are identified, invoked, and executed through the
mobile agents, on the managed nodes. The system parameters optimize themselves by
estimating new transitions and reacting accordingly, with the least human intervention.

References

1. Chaudhry, S.A., Akbar, A.H., Siddiqui, F.A., Yoon, W.S.: Autonomic Network
Management for u-Zone Network. UbiCNS, Korea, (2005).

2. Yong-Lin, S., DeYuan, G., Jin, P., PuBing, S.: A Mobile Agent and Policy-based Network
Management Architecture. Proceedings, ICCIMA 2003, (2003) Page(s): 177- 181.

3. Minseok, Oh.: Network Management Agent Allocation Scheme in Mesh Networks.
Communications Letters, IEEE Volume 7, Issue 12, (2003) Page(s): 601 – 603.

Author Index

Aalto, Samuli 34
Aberer, Karl 7
Akbar, Ali Hammad 259
Aljnidi, Mohamad 239

Badache, Nadjib 163
Bambos, Nicholas 105
Brockmann, Werner 251
Buchty, Rainer 187, 258

Chang, Kisoo 177
Chaudhry, Shafique Ahmad 259

Dabrowski, Christopher 120
Datta, Anwitaman 7
Desertot, Mikael 216
Djenouri, Djamel 163
Donsez, Didier 216

El Sayed Auf, Adam 251
Escoffier, Clement 216

Fekete, Sándor P. 243
Fischer, Stefan 243
Fuhrmann, Thomas 49

Großpietsch, Karl E. 251

Handt, Arne 236
Heegaard, Poul E. 148
Hellbrück, Horst 243
Hladká, Eva 257
Holub, Petr 257

Kang, Namhi 233
Karl, Wolfgang 187
Kim, Cheolgi 177
Kim, Ki-Hyung 259
Kim, Younghan 233
Knoll, Mirko 62

Lalanda, Philippe 216
Leneutre, Jean 239

Leng, Christof 23
Litza, Marek 251

Ma, Joongsoo 177
Maehle, Erik 251
Martinovic, Ivan 23, 90
Mauthe, Andreas 23
Merkle, Daniel 137
Middendorf, Martin 137
Mills, Kevin L. 120
Mösch, Florian 251

Park, Ilkyun 233
Pietzowski, Andreas 202
Procházka, Michal 257

Ross, Kevin 105

Satzger, Benjamin 202
Scheidler, Alexander 137
Schiller, Elad M. 243
Schmitt, Jens B. 23, 90
Schulter, Alexandre 248
Siddiqui, Faisal 259
Steinmetz, Ralf 23
Sterbenz, James P.G. 4
Susitaival, Riikka 34

Tao, Jie 187
Trumler, Wolfgang 202
Turau, Volker 74

Ungerer, Theo 202

van Renesse, Robbert 3
Vieira, Kleber 248

Wegener, Axel 243
Weis, Torben 62
Westphall, Carla 248
Westphall, Carlos Becker 248
Weyer, Christoph 74
Wittner, Otto J. 148

Zdarsky, Frank A. 23, 90

	Frontmatter
	Invited Program
	Keynote
	Making Self-organizing Systems Secure

	Panel
	Self-organising Networks: Panacea or Pandora's Box?

	Full Papers
	Dynamics of Structured and Unstructured Overlays
	The Challenges of Merging Two Similar Structured Overlays: A Tale of Two Networks
	Self-protection in P2P Networks: Choosing the Right Neighbourhood

	Self-organization in Peer-to-Peer Networks
	Modelling the Population Dynamics and the File Availability in a BitTorrent-Like P2P System with Decreasing Peer Arrival Rate
	Combining Virtual and Physical Structures for Self-organized Routing
	Optimizing Locality for Self-organizing Context-Based Systems

	Self-organization in Wireless Environments
	Randomized Self-stabilizing Algorithms for Wireless Sensor Networks
	The Case for Virtualized Wireless Access Networks

	Self-organization in Distributed and GRID Computing
	Job Scheduling for Maximal Throughput in Autonomic Computing Systems
	Investigating Global Behavior in Computing Grids
	Using Decentralized Clustering for Task Allocation in Networks with Reconfigurable Helper Units

	Self-organization for Network Management and Routing
	Self-tuned Refresh Rate in a Swarm Intelligence Path Management System
	Cross-Layer Approach to Detect Data Packet Droppers in Mobile Ad-Hoc Networks
	On-Demand Distributed Energy-Aware Routing with Limited Route Length

	Self-managing and Autonomic Computing
	Automatic Data Locality Optimization Through Self-optimization
	A Bio-inspired Approach for Self-protecting an Organic Middleware with Artificial Antibodies
	Autonomic Management of Edge Servers

	Short Papers
	Ubiquitous Zone Networking Technologies for Multi-hop Based Wireless Communications
	Proposal for Self-organizing Information Distribution in Peer-to-Peer Networks
	Autonomic Security for Home Networks
	Hovering Data Clouds: A Decentralized and Self-organizing Information System
	Defending Grids Against Intrusions
	ORCA -- Towards an Organic Robotic Control Architecture

	Posters
	Active Element Network with P2P Control Plane
	A Monitoring Infrastructure for the Digital on-demand Computing Organism (DodOrg)
	Autonomic Network Management for Wireless Mesh and MANETs

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

